Conductive ionic hydrogels(CIH)have been widely studied for the development of stretchable electronic devices,such as sensors,electrodes,and actuators.Most of these CIH are made into 3D or 2D shape,while 1D CIH(hydrog...Conductive ionic hydrogels(CIH)have been widely studied for the development of stretchable electronic devices,such as sensors,electrodes,and actuators.Most of these CIH are made into 3D or 2D shape,while 1D CIH(hydrogel fibers)is often difficult to make because of the low mechanical robustness of common CIH.Herein,we use gel spinning method to prepare a robust CIH fiber with high strength,large stretchability,and good conductivity.The robust CIH fiber is drawn from the composite gel of sodium polyacrylate(PAAS)and sodium carboxymethyl cellulose(CMC).In the composite CIH fiber,the soft PAAS presents good conductivity and stretchability,while the rigid CMC significantly enhances the strength and toughness of the PAAS/CMC fiber.To protect the conductive PAAS/CMC fiber from damage by water,a thin layer of hydrophobic polymethyl acrylate(PMA)or polybutyl acrylate(PBA)is coated on the PAAS/CMC fiber as a water-resistant and insulating cover.The obtained PAAS/CMC-PMA and PAAS/CMC-PBA CIH fibers present high tensile strength(up to 28 MPa),high tensile toughness(up to 43 MJ/m~3),and good electrical conductivity(up to 0.35 S/m),which are useful for textile-based stretchable electronic devices.展开更多
A novel carbon fiber pretreatment was proposed.Polyacrylonitrile(PAN)-based carbon fibers were first anodized in H3PO4 electrolyte to achieve an active surface,and then coated with Mo-B catalysts by immersed the carbo...A novel carbon fiber pretreatment was proposed.Polyacrylonitrile(PAN)-based carbon fibers were first anodized in H3PO4 electrolyte to achieve an active surface,and then coated with Mo-B catalysts by immersed the carbon fibers in a uniformly dispersed Mo-B sol.The as-treated carbon fibers were then graphitized at 2 400 ℃ for 2 h.The structural changes were characterized by X-ray diffractometry(XRD),Raman spectroscopy,scanning electron microscopy(SEM) and high-resolution transmission electronic microscopy(HRTEM).The results show that much better graphitization can be achieved in the presence of Mo-B,with an interlayer spacing(d002) of 0.335 8 nm and a crystalline size(Lc) of 28 nm.展开更多
An amidoxime-based ultra-high molecular weight polyethylene (UHMWPE) fibrous adsorbent was successfully prepared by T-irradiation-induced graft copolymerization of acrylonitrile (AN) and acrylic acid (AA), follo...An amidoxime-based ultra-high molecular weight polyethylene (UHMWPE) fibrous adsorbent was successfully prepared by T-irradiation-induced graft copolymerization of acrylonitrile (AN) and acrylic acid (AA), followed by amidoximation. The grafting of AN and AA on the UHMWPE fiber and the amidoximation of the grafted fiber were confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The mechanical property of the original and modified UHMWPE fibers was compared by single-filament strength test. The adsorption property of the UHMWPE fibrous adsorbent was evaluated by adsorption test in uranyl nitrate solution and seawater. The surface of the modified UHMWPE fibers was covered by the grafting layer and became rough. The tensile strength of the amidoxime-based UHMWPE fibrous adsorbent was influenced by the absorbed dose and hydrochloric acid elution, but was independent of the grafting yield and amidoximation. The uranium adsorption amount of the amidoxime-based UHMWPE fibrous adsorbent after immersing in seawater for 42 days was 2.3 mg-U/g.展开更多
基金supported by the National Natural Science Foundation of China(No.21778052 and No.21975240)by the Natural Science Foundation of Anhui Province(No.1908085J19)the Talent Research Foundation of Hefei University(No.18-19RC08)。
文摘Conductive ionic hydrogels(CIH)have been widely studied for the development of stretchable electronic devices,such as sensors,electrodes,and actuators.Most of these CIH are made into 3D or 2D shape,while 1D CIH(hydrogel fibers)is often difficult to make because of the low mechanical robustness of common CIH.Herein,we use gel spinning method to prepare a robust CIH fiber with high strength,large stretchability,and good conductivity.The robust CIH fiber is drawn from the composite gel of sodium polyacrylate(PAAS)and sodium carboxymethyl cellulose(CMC).In the composite CIH fiber,the soft PAAS presents good conductivity and stretchability,while the rigid CMC significantly enhances the strength and toughness of the PAAS/CMC fiber.To protect the conductive PAAS/CMC fiber from damage by water,a thin layer of hydrophobic polymethyl acrylate(PMA)or polybutyl acrylate(PBA)is coated on the PAAS/CMC fiber as a water-resistant and insulating cover.The obtained PAAS/CMC-PMA and PAAS/CMC-PBA CIH fibers present high tensile strength(up to 28 MPa),high tensile toughness(up to 43 MJ/m~3),and good electrical conductivity(up to 0.35 S/m),which are useful for textile-based stretchable electronic devices.
基金Project(2006CB600903) supported by the National Basic Research Program of China
文摘A novel carbon fiber pretreatment was proposed.Polyacrylonitrile(PAN)-based carbon fibers were first anodized in H3PO4 electrolyte to achieve an active surface,and then coated with Mo-B catalysts by immersed the carbon fibers in a uniformly dispersed Mo-B sol.The as-treated carbon fibers were then graphitized at 2 400 ℃ for 2 h.The structural changes were characterized by X-ray diffractometry(XRD),Raman spectroscopy,scanning electron microscopy(SEM) and high-resolution transmission electronic microscopy(HRTEM).The results show that much better graphitization can be achieved in the presence of Mo-B,with an interlayer spacing(d002) of 0.335 8 nm and a crystalline size(Lc) of 28 nm.
基金supported by the National Natural Science Foundation of China (11275252)the Key Program of Strategically Advanced Science and Technology Project of the Chinese Academy of Sciences (XDA02040301)the Knowledge Innovation Program of Chinese Academy of Sciences
文摘An amidoxime-based ultra-high molecular weight polyethylene (UHMWPE) fibrous adsorbent was successfully prepared by T-irradiation-induced graft copolymerization of acrylonitrile (AN) and acrylic acid (AA), followed by amidoximation. The grafting of AN and AA on the UHMWPE fiber and the amidoximation of the grafted fiber were confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The mechanical property of the original and modified UHMWPE fibers was compared by single-filament strength test. The adsorption property of the UHMWPE fibrous adsorbent was evaluated by adsorption test in uranyl nitrate solution and seawater. The surface of the modified UHMWPE fibers was covered by the grafting layer and became rough. The tensile strength of the amidoxime-based UHMWPE fibrous adsorbent was influenced by the absorbed dose and hydrochloric acid elution, but was independent of the grafting yield and amidoximation. The uranium adsorption amount of the amidoxime-based UHMWPE fibrous adsorbent after immersing in seawater for 42 days was 2.3 mg-U/g.