A series of 1-D polymer ternary composites based on poly(styrene-butadiene-styrene)(SBS)/carbon nanotubes(CNTs)/few-layer graphene(FLG) conductive fibers(SCGFs)were prepared via wet-spinning. Employed as ultra-high st...A series of 1-D polymer ternary composites based on poly(styrene-butadiene-styrene)(SBS)/carbon nanotubes(CNTs)/few-layer graphene(FLG) conductive fibers(SCGFs)were prepared via wet-spinning. Employed as ultra-high stretchable and super-sensitive strain sensors, the ternary composite fiber materials’ interaction, percolation behaviors and mechanism were systematically explored. The resultant SCGFs-based strain sensors simultaneously exhibited high sensitivity, superior stretchability(with a gauge factor of 5,467 under 600% deformation) and excellent durability under different test conditions due to excellent flexibility of SBS, the synergistic effect of hybrid conductive nanofibers and the strong π-π interaction. Besides, the conductive networks in SBS matrix were greatly affected by the mass ratio of CNTs and FLG, and thus the piezoresistive performances of the strain sensors could be controlled by changing the content of hybrid conductive fillers. Especially, the SCGFs with 0.30 wt.%CNTs(equal to their percolation threshold 0.30 wt.%) and 2.7 wt.% FLG demonstrated the highest sensitivity owing to the bridge effect of FLG between adjacent CNTs. Whereas, the SCGFs with 1.0 wt.% CNTs(higher than their percolation threshold) and 2.0 wt.% FLG showed the maximum strain detection range(600%) due to the welding connection caused by FLG between the contiguous CNTs. To evaluate the fabricated sensors, the tensile and the cyclic mechanical recovery properties of SCGFs were tested and analyzed. Additionally, a theoretical piezoresistive mechanism of the ternary composite fiber was investigated by the evolution of conductive networks according to tunneling theory.展开更多
The concept of artificial enzymes has been proposed for a long time and a large variety of materials have been exploited in enzyme-like catalytic field for decades. The emergence of nanotechnology provides increasing ...The concept of artificial enzymes has been proposed for a long time and a large variety of materials have been exploited in enzyme-like catalytic field for decades. The emergence of nanotechnology provides increasing opportu- nities for the development of artificial enzymes. Conducting polymer-based nanocomposites are a new type of burgeoning functional materials as enzyme mimics owing to their nu- merous functional groups, excellent electrical conductivity and redox properties. This review summarizes the recent progress of the synthesis of conducting polymers and their nanocomposites, as well as their applications as efficient peroxidase mimics. After a brief description of the develop- ment of conducting polymers, we specifically introduce the fabrication of conducting polymers and their nanocomposites via diverse approaches and show the enhanced peroxidase-like catalytic properties. In addition, the mechanism of the en- hanced catalytic efficiency of the conducting polymer-based nanocomposites has been proposed. Finally, we highlight the applications of such conducting polymer-based nanocompo- sites in the sensitive detection of different types of substances. It is anticipated that this review will pave the way for devel- oping more intriguing functional nanomaterials as enzyme mimics, which shows promising applications in a great many technological fields.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (2232018D3-03 and 2232018A3-01)the Program for Changjiang Scholars and Innovative Research Team in University (IRT16R13)+2 种基金the National Natural Science Foundation of China (51603033)the Science and Technology Commission of Shanghai Municipality (16JC1400700)the Innovation Program of Shanghai Municipal Education Commission (2017-01-0700-03-E00055)
文摘A series of 1-D polymer ternary composites based on poly(styrene-butadiene-styrene)(SBS)/carbon nanotubes(CNTs)/few-layer graphene(FLG) conductive fibers(SCGFs)were prepared via wet-spinning. Employed as ultra-high stretchable and super-sensitive strain sensors, the ternary composite fiber materials’ interaction, percolation behaviors and mechanism were systematically explored. The resultant SCGFs-based strain sensors simultaneously exhibited high sensitivity, superior stretchability(with a gauge factor of 5,467 under 600% deformation) and excellent durability under different test conditions due to excellent flexibility of SBS, the synergistic effect of hybrid conductive nanofibers and the strong π-π interaction. Besides, the conductive networks in SBS matrix were greatly affected by the mass ratio of CNTs and FLG, and thus the piezoresistive performances of the strain sensors could be controlled by changing the content of hybrid conductive fillers. Especially, the SCGFs with 0.30 wt.%CNTs(equal to their percolation threshold 0.30 wt.%) and 2.7 wt.% FLG demonstrated the highest sensitivity owing to the bridge effect of FLG between adjacent CNTs. Whereas, the SCGFs with 1.0 wt.% CNTs(higher than their percolation threshold) and 2.0 wt.% FLG showed the maximum strain detection range(600%) due to the welding connection caused by FLG between the contiguous CNTs. To evaluate the fabricated sensors, the tensile and the cyclic mechanical recovery properties of SCGFs were tested and analyzed. Additionally, a theoretical piezoresistive mechanism of the ternary composite fiber was investigated by the evolution of conductive networks according to tunneling theory.
基金supported by the National Natural Science Foundation of China (51473065, 51773075 and 21474043)
文摘The concept of artificial enzymes has been proposed for a long time and a large variety of materials have been exploited in enzyme-like catalytic field for decades. The emergence of nanotechnology provides increasing opportu- nities for the development of artificial enzymes. Conducting polymer-based nanocomposites are a new type of burgeoning functional materials as enzyme mimics owing to their nu- merous functional groups, excellent electrical conductivity and redox properties. This review summarizes the recent progress of the synthesis of conducting polymers and their nanocomposites, as well as their applications as efficient peroxidase mimics. After a brief description of the develop- ment of conducting polymers, we specifically introduce the fabrication of conducting polymers and their nanocomposites via diverse approaches and show the enhanced peroxidase-like catalytic properties. In addition, the mechanism of the en- hanced catalytic efficiency of the conducting polymer-based nanocomposites has been proposed. Finally, we highlight the applications of such conducting polymer-based nanocompo- sites in the sensitive detection of different types of substances. It is anticipated that this review will pave the way for devel- oping more intriguing functional nanomaterials as enzyme mimics, which shows promising applications in a great many technological fields.