A novel technique was used to fabricate three-dimensional photonic crystals with superlattices. The super structure was fabricated by assembling monodispersed microspheres in the grooves of the scales of morpho butter...A novel technique was used to fabricate three-dimensional photonic crystals with superlattices. The super structure was fabricated by assembling monodispersed microspheres in the grooves of the scales of morpho butterfly, which makes the photonic crystal being composed of two kinds of different photonic structures (natural groove structure of butterfly wing and artificial microspherical colloids arrangement). The superstructural photonic crystal exhibits some unique optical properties different from both the butterfly wing and the colloidal crystal. The approach exhibited here provides a new way for fabricate photonic crystals with superlattices.展开更多
The authors present a new design of high resolution and wide dynamic range photonic crystal pressure sensor. This sensor is based on two-dimensional photonic crystal with square array of silicon rods surrounded by air...The authors present a new design of high resolution and wide dynamic range photonic crystal pressure sensor. This sensor is based on two-dimensional photonic crystal with square array of silicon rods surrounded by air. The sensor consists of a photonic crystal waveguide which is coupled to a photonic crystal nanocavity. The waveguide is configured by removing one row of Si rods and nanocavity is formed by modifying the radius of one Si rod. The sensor is designed for 1300 nm-1400 nm wavelengths. Simulation results show that resonant wavelength of nanocavity is linearly shifted to larger wavelengths by increasing the pressure. The designed sensor has a linear behavior between 0.1 GPa to 10 GPa of applied pressure and 8 nrrdGPa of pressure sensitivity.展开更多
Highly planar conformation is considered to be one of the most important properties for high performance organic semiconductors. Among all kinds strategies for designing highly performing materials, noncovalent confor...Highly planar conformation is considered to be one of the most important properties for high performance organic semiconductors. Among all kinds strategies for designing highly performing materials, noncovalent conformational locks (NCLs) have been widely used to increase the planarity and rigidity for x-conjugated systems. This review summarizes π-conjugated small molecules and polymers by employing various NCLs for controlling molecular conformation in the past two years. The optoelectronic properties of the conjugated materials, together with their applications on organic field-effect transistors (OFETs) and organic photovoltaics (OPVs) are discussed. Besides, the outlook and challenges in this field are also presented. It is obvious that NCLs play an important role in the design and synthesis of high-performance organic semiconductors.展开更多
Dielectric anisotropy of anilinium perchlorate is investigated at various temperatures. Crystal structures at different temperatures reveal that significant dielectric change between low and high dielectric states is ...Dielectric anisotropy of anilinium perchlorate is investigated at various temperatures. Crystal structures at different temperatures reveal that significant dielectric change between low and high dielectric states is closely related to the disorder of the anilinium cation and perchlorate anion at high dielectric state; meanwhile, the conductivity after phase transition also contributes a lot to the high dielectric state.展开更多
基金The National Natural Science Foundation of China (Grant No. 90401018) and Ministry of Education (Grant No. 20040286024)
文摘A novel technique was used to fabricate three-dimensional photonic crystals with superlattices. The super structure was fabricated by assembling monodispersed microspheres in the grooves of the scales of morpho butterfly, which makes the photonic crystal being composed of two kinds of different photonic structures (natural groove structure of butterfly wing and artificial microspherical colloids arrangement). The superstructural photonic crystal exhibits some unique optical properties different from both the butterfly wing and the colloidal crystal. The approach exhibited here provides a new way for fabricate photonic crystals with superlattices.
文摘The authors present a new design of high resolution and wide dynamic range photonic crystal pressure sensor. This sensor is based on two-dimensional photonic crystal with square array of silicon rods surrounded by air. The sensor consists of a photonic crystal waveguide which is coupled to a photonic crystal nanocavity. The waveguide is configured by removing one row of Si rods and nanocavity is formed by modifying the radius of one Si rod. The sensor is designed for 1300 nm-1400 nm wavelengths. Simulation results show that resonant wavelength of nanocavity is linearly shifted to larger wavelengths by increasing the pressure. The designed sensor has a linear behavior between 0.1 GPa to 10 GPa of applied pressure and 8 nrrdGPa of pressure sensitivity.
基金supported by the National Natural Science Foundation of China (21774130, 21574135)Beijing Municipal Natural Science Foundation (2162043)+2 种基金the Key Research Program of Frontier Science, Chinese Academy of Sciences (QYZDB-SSW-JSC046)Key Research Program of the Chinese Academy of Sciences (XDPB08-2)One Hundred Talents Program of Chinese Academy of Sciences, and University of Chinese Academy of Sciences
文摘Highly planar conformation is considered to be one of the most important properties for high performance organic semiconductors. Among all kinds strategies for designing highly performing materials, noncovalent conformational locks (NCLs) have been widely used to increase the planarity and rigidity for x-conjugated systems. This review summarizes π-conjugated small molecules and polymers by employing various NCLs for controlling molecular conformation in the past two years. The optoelectronic properties of the conjugated materials, together with their applications on organic field-effect transistors (OFETs) and organic photovoltaics (OPVs) are discussed. Besides, the outlook and challenges in this field are also presented. It is obvious that NCLs play an important role in the design and synthesis of high-performance organic semiconductors.
基金supported by the National Natural Science Foundation of China (21001089, 20825103, 90922031 and 21021061)the 973 project from MSTC (2012CB821704)
文摘Dielectric anisotropy of anilinium perchlorate is investigated at various temperatures. Crystal structures at different temperatures reveal that significant dielectric change between low and high dielectric states is closely related to the disorder of the anilinium cation and perchlorate anion at high dielectric state; meanwhile, the conductivity after phase transition also contributes a lot to the high dielectric state.