With the integration of renewable power and electric vehicle,the power system stability is of increasing concern because the active power generated by the renewable energy and absorbed by the electric vehicle vary ran...With the integration of renewable power and electric vehicle,the power system stability is of increasing concern because the active power generated by the renewable energy and absorbed by the electric vehicle vary randomly.Based on the deterministic differential equation model,the nonlinear and linear stochastic differential equation models of power system under Gauss type random excitation are proposed in this paper.The angle curves under different random excitations were simulated using Euler-Maruyama(EM) numerical method.The numerical stability of EM method was proved.The mean stability and mean square stability of the power system under Gauss type of random small excitation were verified theoretically and illustrated with simulation sample.展开更多
By using an extended Melnikov method on multi-degree-of-freedom Hamiltonian systems with perturbations,the global bifurcations and chaotic dynamics are investigated for a parametrically excited,simply supported rectan...By using an extended Melnikov method on multi-degree-of-freedom Hamiltonian systems with perturbations,the global bifurcations and chaotic dynamics are investigated for a parametrically excited,simply supported rectangular buckled thin plate.The formulas of the rectangular buckled thin plate are derived by using the von Karman type equation.The two cases of the buckling for the rectangular thin plate are considered.With the aid of Galerkin's approach,a two-degree-of-freedom nonautonomous nonlinear system is obtained for the non-autonomous rectangular buckled thin plate.The high-dimensional Melnikov method developed by Yagasaki is directly employed to the non-autonomous ordinary differential equation of motion to analyze the global bifurcations and chaotic dynamics of the rectangular buckled thin plate.Numerical method is used to find the chaotic responses of the non-autonomous rectangular buckled thin plate.The results obtained here indicate that the chaotic motions can occur in the parametrically excited,simply supported rectangular buckled thin plate.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 51137002,51190102)the Fundamental Research Funds for the Central Universities (Grant No. BZX/09B101-32)
文摘With the integration of renewable power and electric vehicle,the power system stability is of increasing concern because the active power generated by the renewable energy and absorbed by the electric vehicle vary randomly.Based on the deterministic differential equation model,the nonlinear and linear stochastic differential equation models of power system under Gauss type random excitation are proposed in this paper.The angle curves under different random excitations were simulated using Euler-Maruyama(EM) numerical method.The numerical stability of EM method was proved.The mean stability and mean square stability of the power system under Gauss type of random small excitation were verified theoretically and illustrated with simulation sample.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072008,10732020 and 11002005)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality(PHRIHLB)
文摘By using an extended Melnikov method on multi-degree-of-freedom Hamiltonian systems with perturbations,the global bifurcations and chaotic dynamics are investigated for a parametrically excited,simply supported rectangular buckled thin plate.The formulas of the rectangular buckled thin plate are derived by using the von Karman type equation.The two cases of the buckling for the rectangular thin plate are considered.With the aid of Galerkin's approach,a two-degree-of-freedom nonautonomous nonlinear system is obtained for the non-autonomous rectangular buckled thin plate.The high-dimensional Melnikov method developed by Yagasaki is directly employed to the non-autonomous ordinary differential equation of motion to analyze the global bifurcations and chaotic dynamics of the rectangular buckled thin plate.Numerical method is used to find the chaotic responses of the non-autonomous rectangular buckled thin plate.The results obtained here indicate that the chaotic motions can occur in the parametrically excited,simply supported rectangular buckled thin plate.