Using ANSYS-CFX, a general purpose fluid dynamics program, the vortex-induced vibration(VIV) of a variable cross-section cylinder is simulated under uniform current with high Reynolds numbers. Large eddy simulation(LE...Using ANSYS-CFX, a general purpose fluid dynamics program, the vortex-induced vibration(VIV) of a variable cross-section cylinder is simulated under uniform current with high Reynolds numbers. Large eddy simulation(LES) is conducted for studying the fluid-structure interaction. The vortex shedding in the wake, the motion trajectories of a cylinder, the variation of drag and lift forces on the cylinder are analyzed. The results show that the vortices of variable cross-section cylinder are chaotic and are varying along the cylinder. In places where cross-sections are changing significantly, the vortices are more irregular. The motion trail of the cylinder is almost the same but irregular. The drag and lift coefficients of the cylinder are varying with the changes of diameters.展开更多
The present paper described an experimental investigation of separation control of an Unmanned Aerial Vehicle(UAV)at high wind speeds.The plasma actuator was based on Dielectric Barrier Discharge(DBD)and operated in a...The present paper described an experimental investigation of separation control of an Unmanned Aerial Vehicle(UAV)at high wind speeds.The plasma actuator was based on Dielectric Barrier Discharge(DBD)and operated in a steady manner.The flow over a wing of UAV was performed with smoke flow visualization in theΦ0.75 m low speed wind tunnel to reveal the flow structure over the wing so that the locations of plasma actuators could be optimized.A full model of the UAV was experimentally investigated in theΦ3.2 m low speed wind tunnel using a six-component internal strain gauge balance.The effects of the key parameters,including the locations of the plasma actuators,the applied voltage amplitude and the operating frequency,were obtained.The whole test model was made of aluminium and acted as a cathode of the actuator.The results showed that the plasma acting on the surface of UAV could obviously suppress the boundary layer separation and reduce the model vibration at the high wind speeds.It was found that the maximum lift coefficient of the UAV was increased by 2.5%and the lift/drag ratio was increased by about 80%at the wind speed of 100 m/s.The control mechanism of the plasma actuator at the test configuration was also analyzed.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51179179 and 51079136)
文摘Using ANSYS-CFX, a general purpose fluid dynamics program, the vortex-induced vibration(VIV) of a variable cross-section cylinder is simulated under uniform current with high Reynolds numbers. Large eddy simulation(LES) is conducted for studying the fluid-structure interaction. The vortex shedding in the wake, the motion trajectories of a cylinder, the variation of drag and lift forces on the cylinder are analyzed. The results show that the vortices of variable cross-section cylinder are chaotic and are varying along the cylinder. In places where cross-sections are changing significantly, the vortices are more irregular. The motion trail of the cylinder is almost the same but irregular. The drag and lift coefficients of the cylinder are varying with the changes of diameters.
基金supported by the Exploration Foundation of Weapon Systems(Grant No.7130711)
文摘The present paper described an experimental investigation of separation control of an Unmanned Aerial Vehicle(UAV)at high wind speeds.The plasma actuator was based on Dielectric Barrier Discharge(DBD)and operated in a steady manner.The flow over a wing of UAV was performed with smoke flow visualization in theΦ0.75 m low speed wind tunnel to reveal the flow structure over the wing so that the locations of plasma actuators could be optimized.A full model of the UAV was experimentally investigated in theΦ3.2 m low speed wind tunnel using a six-component internal strain gauge balance.The effects of the key parameters,including the locations of the plasma actuators,the applied voltage amplitude and the operating frequency,were obtained.The whole test model was made of aluminium and acted as a cathode of the actuator.The results showed that the plasma acting on the surface of UAV could obviously suppress the boundary layer separation and reduce the model vibration at the high wind speeds.It was found that the maximum lift coefficient of the UAV was increased by 2.5%and the lift/drag ratio was increased by about 80%at the wind speed of 100 m/s.The control mechanism of the plasma actuator at the test configuration was also analyzed.