Two experimental single crystal superalloys, Ru-free alloy and Ru-containing alloy with [001] orientation, other alloying element contents being basically kept same, were cast in the directionally solidified furnace. ...Two experimental single crystal superalloys, Ru-free alloy and Ru-containing alloy with [001] orientation, other alloying element contents being basically kept same, were cast in the directionally solidified furnace. The effect of Ru on the stress rupture properties of the single crystal superalloy was investigated at (980 ℃, 250 MPa), (1100 ℃, 140 MPa) and (1120 ℃, 140 MPa). The results show that Ru can enhance high temperature stress rupture properties of single crystal superalloy. The improvement effect of Ru addition on stress rupture properties decreases with increasing test temperature. The γ′ coarsening and rafting directionally are observed in Ru-free alloy and Ru-containing alloy after stress rupture test. Needle shaped TCP phases precipitated in both of alloys after stress rupture test at (1100 ℃, 140 MPa) and (1120 ℃, 140 MPa) and no TCP phase was observed in both of alloys after stress rupture test (980 ℃, 250 MPa). The precipitate volume fraction of TCP phases is significantly decreased by the addition of Ru. At last, the relationship between the microstructure change with Ru addition and improvement of stress rupture properties was discussed.展开更多
In order to reveal the temperature dependence of anisotropic stress?rupture behavior of SRR99 single crystal superalloys under conditions of temperature ranging from 650 to 1 040 °C and typical stresses,fracture...In order to reveal the temperature dependence of anisotropic stress?rupture behavior of SRR99 single crystal superalloys under conditions of temperature ranging from 650 to 1 040 °C and typical stresses,fracture morphologies and microstructure evolution were investigated by SEM and TEM.From the Larson-Miller curves,it is found that single crystal with [001] orientation has the optimum stress rupture property in comparison with [011] and [111] orientations at lower and intermediate temperature.With increasing temperature to 1 040 °C,stress-rupture properties of single crystals with three principal orientations tend to be equivalent.Based on the fracture surface and microstructural observations,superior stress?rupture behavior of single crystal with [001] orientation was rationalized and the effect of misorientation of single crystal on stress rupture property was also discussed.展开更多
The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic...The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic after creep rupture was studied by SEM and TEM. The results show that the alloy has excellent creep properties. Two different types of creep behavior can be shown in the creep curves. The primary creep is characterized by the high amplitude at test conditions of (760 °C, 600 MPa) and (850 °C, 550 MPa) and the primary creep strain is limited at (980 °C, 250 MPa), (1100 °C, 140 MPa) and (1120 °C, 120 MPa). A little change ofγ′precipitate morphology occurs at (760 °C, 600 MPa). The lateral merging of the γ′ precipitate has already begun at (850 °C, 550 MPa). Theγphase is surrounded by theγ′phase at (980 °C, 250 MPa). Theγphase is no longer continuous tested at (1070 °C, 140 MPa). At (1100 °C, 120 MPa), the thickness ofγphase continues to increase. No TCP phase precipitates in the specimens at (760 °C, 600 MPa), (850 °C, 550 MPa) and (980 °C, 250 MPa). Needle shaped TCP phase precipitates in the specimens tested at (1070 °C, 140 MPa) and (1100 °C, 120 MPa). The dislocation shear mechanism including stacking fault formation is operative at lower temperature and high stress. The dislocation by-passing mechanism occurs to form networks atγ/γ′interface under the condition of high temperature and lower stress.展开更多
The bending modulus property of high performance fiber is an important property for both polymer science and engineering. The measurement of the bending performance is, however, difficult because of the thin size of t...The bending modulus property of high performance fiber is an important property for both polymer science and engineering. The measurement of the bending performance is, however, difficult because of the thin size of the fiber. We have measured this property by the axial compression bending method where single fiber with suitable slenderness is compressed in the fiber axial direction to obtain the peak point of the force-displacement curve. Then the bending modulus and the flexural rigidity can be calculated by measuring the protruding length and diameter of fiber needles and the critical force, Pcr. The measured data show that the bending characteristics of all kinds of high performance fiber are dissimilar evidently.展开更多
Performance of Mellapak 250Y and 350Y corrugated structured packing in distillation applications at pressures ranging from 0.3 to 2.0MPa is analysed by using HTU-NTU method. These data are obtained in a distillation c...Performance of Mellapak 250Y and 350Y corrugated structured packing in distillation applications at pressures ranging from 0.3 to 2.0MPa is analysed by using HTU-NTU method. These data are obtained in a distillation column with 0.15 m diameter op-erated with n-butane/n-pentane system at total reflux. In considering the axial backmixing effects, the height of an overall gas phase transfer unit, HTUOG , is divided into two parts. One part represents the height of an overall gas phase transfer unit, without backmixing, designated as*OGHTU, and the other part, designated as the height of a backmixing unit (HBUO), accounts for the backmixing effects. The HTUOG is evaluated from the measured concentration profile of n-butane in liquid phase. The HBUO obtained experimentally is correlated in terms of the properties of the materials being separated and the equivalent diameter of the structured packing. Our result shows that HBUO varies from 0.12 to 0.34 m as pressure increases from 1.0 to 1.9 MPa. It indicates that the overall efficiency of the structured packing decreases gradually at high pressure, as a result of the vapor backmixing.展开更多
The objective of this work is to study a comprehensive performance of three types of structured parking in CO2 absorption application. One of them was developed in Mexican National Institute of Nuclear Research (ININ...The objective of this work is to study a comprehensive performance of three types of structured parking in CO2 absorption application. One of them was developed in Mexican National Institute of Nuclear Research (ININ abbreviation in Spanish of Instituto Nacional de lnvestigaciones Nucleates), and the other two, Sulzer BX and Mellapak 250Y, by Sulzer Brothers Ltd. Aqueous solution of 30 weight % Monoethanolamine was employed as absorption solvent. The performance of the structured packing was evaluated in terms of the pressure drop, holds up, volumetric overall mass transfer coefficient and height of a global transfer unit of gas and liquid side as a function of the process operating parameters including gas and liquid load, by using hydrodynamic and mass transfer models. The pressure drop of ININ packing was higher than Sulzer BX and Mellapak 250Y, and volumetric overall mass transfer coefficient values are similar of Sulzer BX values and higher than Mellapak 250Y, although Sulzer BX and ININI 8 packing had less height of a global transfer unit of gas side values than Mellapak 250Y packing. The above-mentioned are consequences of the geometric characteristics and operational behavior for each packing.展开更多
Pure CaB6single crystals are synthesized under high pressure (1 GPa) and temperature (1050°C). The temperature-dependenceof electric resistivity and Hall coefficient from 2 to 300 K shows that the CaB6single crys...Pure CaB6single crystals are synthesized under high pressure (1 GPa) and temperature (1050°C). The temperature-dependenceof electric resistivity and Hall coefficient from 2 to 300 K shows that the CaB6single crystals are conductors withsemi-metallic behavior and electron carriers. Band structure calculations indicate that the conduction and valence bands meetat the X point at the Fermi level, which is consistent with the experimentally determined conducting behavior of CaB6singlecrystals. Calculations of state density suggest that the states at the Fermi level originate from the 2p orbital of the B atoms andthe 3d orbital of the Ca atom. Magnetization measurements show the paramagnetic nature of the CaB6. The micro-hardness ofCaB6is 24.39 GPa, and the Raman spectra of CaB6yield three sharp peaks at around 780.9, 1138.9, and 1282.1 cm 1for T2g,Eg, and A1g, respectively. The specific heat of the crystal is measured and found to be well described by the Debye and Einsteincombined model. The fitting results show Debye and Einstein temperatures are 1119 and 199 K, respectively.展开更多
文摘Two experimental single crystal superalloys, Ru-free alloy and Ru-containing alloy with [001] orientation, other alloying element contents being basically kept same, were cast in the directionally solidified furnace. The effect of Ru on the stress rupture properties of the single crystal superalloy was investigated at (980 ℃, 250 MPa), (1100 ℃, 140 MPa) and (1120 ℃, 140 MPa). The results show that Ru can enhance high temperature stress rupture properties of single crystal superalloy. The improvement effect of Ru addition on stress rupture properties decreases with increasing test temperature. The γ′ coarsening and rafting directionally are observed in Ru-free alloy and Ru-containing alloy after stress rupture test. Needle shaped TCP phases precipitated in both of alloys after stress rupture test at (1100 ℃, 140 MPa) and (1120 ℃, 140 MPa) and no TCP phase was observed in both of alloys after stress rupture test (980 ℃, 250 MPa). The precipitate volume fraction of TCP phases is significantly decreased by the addition of Ru. At last, the relationship between the microstructure change with Ru addition and improvement of stress rupture properties was discussed.
基金Projects (2010CB631200,2010CB631206) supported by the National Basic Research Program of ChinaProject (50931004) supported by the National Natural Science Foundation of China
文摘In order to reveal the temperature dependence of anisotropic stress?rupture behavior of SRR99 single crystal superalloys under conditions of temperature ranging from 650 to 1 040 °C and typical stresses,fracture morphologies and microstructure evolution were investigated by SEM and TEM.From the Larson-Miller curves,it is found that single crystal with [001] orientation has the optimum stress rupture property in comparison with [011] and [111] orientations at lower and intermediate temperature.With increasing temperature to 1 040 °C,stress-rupture properties of single crystals with three principal orientations tend to be equivalent.Based on the fracture surface and microstructural observations,superior stress?rupture behavior of single crystal with [001] orientation was rationalized and the effect of misorientation of single crystal on stress rupture property was also discussed.
文摘The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic after creep rupture was studied by SEM and TEM. The results show that the alloy has excellent creep properties. Two different types of creep behavior can be shown in the creep curves. The primary creep is characterized by the high amplitude at test conditions of (760 °C, 600 MPa) and (850 °C, 550 MPa) and the primary creep strain is limited at (980 °C, 250 MPa), (1100 °C, 140 MPa) and (1120 °C, 120 MPa). A little change ofγ′precipitate morphology occurs at (760 °C, 600 MPa). The lateral merging of the γ′ precipitate has already begun at (850 °C, 550 MPa). Theγphase is surrounded by theγ′phase at (980 °C, 250 MPa). Theγphase is no longer continuous tested at (1070 °C, 140 MPa). At (1100 °C, 120 MPa), the thickness ofγphase continues to increase. No TCP phase precipitates in the specimens at (760 °C, 600 MPa), (850 °C, 550 MPa) and (980 °C, 250 MPa). Needle shaped TCP phase precipitates in the specimens tested at (1070 °C, 140 MPa) and (1100 °C, 120 MPa). The dislocation shear mechanism including stacking fault formation is operative at lower temperature and high stress. The dislocation by-passing mechanism occurs to form networks atγ/γ′interface under the condition of high temperature and lower stress.
文摘The bending modulus property of high performance fiber is an important property for both polymer science and engineering. The measurement of the bending performance is, however, difficult because of the thin size of the fiber. We have measured this property by the axial compression bending method where single fiber with suitable slenderness is compressed in the fiber axial direction to obtain the peak point of the force-displacement curve. Then the bending modulus and the flexural rigidity can be calculated by measuring the protruding length and diameter of fiber needles and the critical force, Pcr. The measured data show that the bending characteristics of all kinds of high performance fiber are dissimilar evidently.
基金Supported by the National Natural Science Foundation of China (No. 20136010).
文摘Performance of Mellapak 250Y and 350Y corrugated structured packing in distillation applications at pressures ranging from 0.3 to 2.0MPa is analysed by using HTU-NTU method. These data are obtained in a distillation column with 0.15 m diameter op-erated with n-butane/n-pentane system at total reflux. In considering the axial backmixing effects, the height of an overall gas phase transfer unit, HTUOG , is divided into two parts. One part represents the height of an overall gas phase transfer unit, without backmixing, designated as*OGHTU, and the other part, designated as the height of a backmixing unit (HBUO), accounts for the backmixing effects. The HTUOG is evaluated from the measured concentration profile of n-butane in liquid phase. The HBUO obtained experimentally is correlated in terms of the properties of the materials being separated and the equivalent diameter of the structured packing. Our result shows that HBUO varies from 0.12 to 0.34 m as pressure increases from 1.0 to 1.9 MPa. It indicates that the overall efficiency of the structured packing decreases gradually at high pressure, as a result of the vapor backmixing.
文摘The objective of this work is to study a comprehensive performance of three types of structured parking in CO2 absorption application. One of them was developed in Mexican National Institute of Nuclear Research (ININ abbreviation in Spanish of Instituto Nacional de lnvestigaciones Nucleates), and the other two, Sulzer BX and Mellapak 250Y, by Sulzer Brothers Ltd. Aqueous solution of 30 weight % Monoethanolamine was employed as absorption solvent. The performance of the structured packing was evaluated in terms of the pressure drop, holds up, volumetric overall mass transfer coefficient and height of a global transfer unit of gas and liquid side as a function of the process operating parameters including gas and liquid load, by using hydrodynamic and mass transfer models. The pressure drop of ININ packing was higher than Sulzer BX and Mellapak 250Y, and volumetric overall mass transfer coefficient values are similar of Sulzer BX values and higher than Mellapak 250Y, although Sulzer BX and ININI 8 packing had less height of a global transfer unit of gas side values than Mellapak 250Y packing. The above-mentioned are consequences of the geometric characteristics and operational behavior for each packing.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51072174, 50772094 and 50821001)the NBRPC(Grant No. 2011CB808205)
文摘Pure CaB6single crystals are synthesized under high pressure (1 GPa) and temperature (1050°C). The temperature-dependenceof electric resistivity and Hall coefficient from 2 to 300 K shows that the CaB6single crystals are conductors withsemi-metallic behavior and electron carriers. Band structure calculations indicate that the conduction and valence bands meetat the X point at the Fermi level, which is consistent with the experimentally determined conducting behavior of CaB6singlecrystals. Calculations of state density suggest that the states at the Fermi level originate from the 2p orbital of the B atoms andthe 3d orbital of the Ca atom. Magnetization measurements show the paramagnetic nature of the CaB6. The micro-hardness ofCaB6is 24.39 GPa, and the Raman spectra of CaB6yield three sharp peaks at around 780.9, 1138.9, and 1282.1 cm 1for T2g,Eg, and A1g, respectively. The specific heat of the crystal is measured and found to be well described by the Debye and Einsteincombined model. The fitting results show Debye and Einstein temperatures are 1119 and 199 K, respectively.