基于晶闸管换流器的特高压直流输电系统(ultra-high voltage direct current based on line commutated converter,LCC-UHVDC)的故障定位算法对智能电网的安全稳定运行起着重要作用。针对长距离特高压直流输电系统故障测距方法精准度低...基于晶闸管换流器的特高压直流输电系统(ultra-high voltage direct current based on line commutated converter,LCC-UHVDC)的故障定位算法对智能电网的安全稳定运行起着重要作用。针对长距离特高压直流输电系统故障测距方法精准度低、快速性差的问题,提出了一种基于变分模态分解法(variational mode decomposition,VMD)和Teager能量算子(Teager energy operator,TEO)的双端行波故障测距方法。首先,研究了LCC-UHVDC线路故障电压行波的传播特性。利用零模电压随线路传播衰减明显的特征,通过VMD算法提取采样点处零模电压行波的时频特性。针对VMD参数选择不当导致的模态混叠问题,利用K-L散度(Kullback-Leibler divergence)对提取的模态指标进行优化。然后采用TEO对分解后信号进行瞬时能量谱提取,精确标定波头到达时间,最后采用双端迭代测距法迭代求解故障距离。在PSCAD/EMTDC搭建±800 kV LCC-UHVDC仿真模型进行验证。结果表明,所提方法在不同故障位置、过渡电阻和故障类型下具有较强的鲁棒性。展开更多
特高压(ultra high voltage,UHV)交流与直流线路同廊道运行时带电作业区域电压高、场强大,交直流混合电场比单一电场更为复杂。为确保作业人员安全,结合实际±1100 kV直流和1000 kV交流线路,建立了包含输电导线、杆塔及带电作业人...特高压(ultra high voltage,UHV)交流与直流线路同廊道运行时带电作业区域电压高、场强大,交直流混合电场比单一电场更为复杂。为确保作业人员安全,结合实际±1100 kV直流和1000 kV交流线路,建立了包含输电导线、杆塔及带电作业人员的三维计算模型,通过分析开展带电作业时人员的体表混合场强、电位转移电流及暂态能量,对作业人员安全防护进行研究。结果表明:随着作业人员不断接近直流线路,体表场强受交流线路影响越明显,最高可使作业人员体表场强增大约9%,达到1920 kV/m;交流线路的存在将导致电位转移电流增长约7%,但对暂态能量影响较小。通过对特高压线路不停电检修所减少的碳排放量进行进一步计算,验证了特高压带电作业对减少碳排放具有促进作用。展开更多
为提高特高压直流输电(Ultra High Voltage Direct Current Transmission,UHVDC)系统的电压稳定性与整体运行效率,分析UHVDC系统概述与动态电压控制策略设计目的和原理,并深入研究现有电压控制方法,如比例-积分-微分(Proportion-Integra...为提高特高压直流输电(Ultra High Voltage Direct Current Transmission,UHVDC)系统的电压稳定性与整体运行效率,分析UHVDC系统概述与动态电压控制策略设计目的和原理,并深入研究现有电压控制方法,如比例-积分-微分(Proportion-Integral-Differential,PID)控制、模糊逻辑控制、人工智能控制策略等,设计一种基于深度学习的新型动态电压控制方法。通过实际测试证实,新型控制策略在提高电压稳定性与响应速度方面具有有效性,不仅能有效应对复杂电网环境下电压波动问题,还能在保证系统稳定的同时提高能效。展开更多
文摘基于晶闸管换流器的特高压直流输电系统(ultra-high voltage direct current based on line commutated converter,LCC-UHVDC)的故障定位算法对智能电网的安全稳定运行起着重要作用。针对长距离特高压直流输电系统故障测距方法精准度低、快速性差的问题,提出了一种基于变分模态分解法(variational mode decomposition,VMD)和Teager能量算子(Teager energy operator,TEO)的双端行波故障测距方法。首先,研究了LCC-UHVDC线路故障电压行波的传播特性。利用零模电压随线路传播衰减明显的特征,通过VMD算法提取采样点处零模电压行波的时频特性。针对VMD参数选择不当导致的模态混叠问题,利用K-L散度(Kullback-Leibler divergence)对提取的模态指标进行优化。然后采用TEO对分解后信号进行瞬时能量谱提取,精确标定波头到达时间,最后采用双端迭代测距法迭代求解故障距离。在PSCAD/EMTDC搭建±800 kV LCC-UHVDC仿真模型进行验证。结果表明,所提方法在不同故障位置、过渡电阻和故障类型下具有较强的鲁棒性。
文摘为提高特高压直流输电(Ultra High Voltage Direct Current Transmission,UHVDC)系统的电压稳定性与整体运行效率,分析UHVDC系统概述与动态电压控制策略设计目的和原理,并深入研究现有电压控制方法,如比例-积分-微分(Proportion-Integral-Differential,PID)控制、模糊逻辑控制、人工智能控制策略等,设计一种基于深度学习的新型动态电压控制方法。通过实际测试证实,新型控制策略在提高电压稳定性与响应速度方面具有有效性,不仅能有效应对复杂电网环境下电压波动问题,还能在保证系统稳定的同时提高能效。