In ecological zone of Chengdu, Sichuan, microspore culture was carried out in Brassica napus L. to study the influencing factors on microspore culture. The results showed that the temperature on microspore formation s...In ecological zone of Chengdu, Sichuan, microspore culture was carried out in Brassica napus L. to study the influencing factors on microspore culture. The results showed that the temperature on microspore formation stage, day and night temperature, disinfection solution of buds, cultivation concentration on microspore and strain-age were both important influencing factors on microspore culture. At a temperature below 5 ℃ or above 20 ℃, the material had a much lower embryo producing rate or even could not produce any embryo, but at the optimum temperature of 10 -15 ℃ the embryo yield was up to 300 pieces per bud; the best cultivation effect appeared when 0. 1% HgCl2 was used for disin- fection; the best density of microspore was 3 -4 buds per dish; In 2009, while strain-age was from 125 d to 150 d, the microspore embryo yield increased as strain-age increased. When stain-age was 150 days, the microspore embryo yield was up to the highest, but the yield declined after 150 days.展开更多
Experimental research of the heat and high-energy processes occurring in the cathode solid medium in the high voltage electric discharge system (electrolysis cell and glow discharge device) is presented. The experim...Experimental research of the heat and high-energy processes occurring in the cathode solid medium in the high voltage electric discharge system (electrolysis cell and glow discharge device) is presented. The experiments were carried out: Electrolysis in heavy water with a Pd cathode, electrolysis in light water with Ni and Pd cathodes, the glow discharge in deuterium with a Pd cathode. Excess heat was observed in experiments with high-voltage electrolysis (1,000 V or more). The experiments showed that the maximum excess heat power values of 5-8 W for glow discharge and 180-280 W for high-voltage electrolysis and heat efficiency up to 170% for glow discharge, and 800% for high-voltage electrolysis. The production of impurity nuclide yield showing a shift of up to a few per cent from natural isotopic abundances was detected by spark mass spectrometry and by secondary ionic mass spectrometry. The authors propose based on these experimental results a phenomenological model for low energy nuclear reaction.展开更多
文摘In ecological zone of Chengdu, Sichuan, microspore culture was carried out in Brassica napus L. to study the influencing factors on microspore culture. The results showed that the temperature on microspore formation stage, day and night temperature, disinfection solution of buds, cultivation concentration on microspore and strain-age were both important influencing factors on microspore culture. At a temperature below 5 ℃ or above 20 ℃, the material had a much lower embryo producing rate or even could not produce any embryo, but at the optimum temperature of 10 -15 ℃ the embryo yield was up to 300 pieces per bud; the best cultivation effect appeared when 0. 1% HgCl2 was used for disin- fection; the best density of microspore was 3 -4 buds per dish; In 2009, while strain-age was from 125 d to 150 d, the microspore embryo yield increased as strain-age increased. When stain-age was 150 days, the microspore embryo yield was up to the highest, but the yield declined after 150 days.
文摘Experimental research of the heat and high-energy processes occurring in the cathode solid medium in the high voltage electric discharge system (electrolysis cell and glow discharge device) is presented. The experiments were carried out: Electrolysis in heavy water with a Pd cathode, electrolysis in light water with Ni and Pd cathodes, the glow discharge in deuterium with a Pd cathode. Excess heat was observed in experiments with high-voltage electrolysis (1,000 V or more). The experiments showed that the maximum excess heat power values of 5-8 W for glow discharge and 180-280 W for high-voltage electrolysis and heat efficiency up to 170% for glow discharge, and 800% for high-voltage electrolysis. The production of impurity nuclide yield showing a shift of up to a few per cent from natural isotopic abundances was detected by spark mass spectrometry and by secondary ionic mass spectrometry. The authors propose based on these experimental results a phenomenological model for low energy nuclear reaction.