This paper intreduced a high-precision high-voltage elec- trostatic generator which utilized STM32F103 as the main coutroller. The hardware and software design of the system were detailed. The full use of ample on-chi...This paper intreduced a high-precision high-voltage elec- trostatic generator which utilized STM32F103 as the main coutroller. The hardware and software design of the system were detailed. The full use of ample on-chip resources of STM32F103, such as ADC and the PWM output of timer, contributed to the small size and low cost of the system. The 16-bit PWM signals, generated by the timer on chip, served to adjust the our-put voltage accurately. The tot~ screen was responsible for the setting and display of output voltage, and the friendly humawcomptaer interaction was built. Experimental results indicated that this high-voltage static generator was of high precision and great practicability for application.展开更多
GaN (gallium nitride) buck-rectifier has been proposed to realize high power density ISOP (input series and output parallel)-IPOS (input parallel and output series) converter-based dc distribution system. The ul...GaN (gallium nitride) buck-rectifier has been proposed to realize high power density ISOP (input series and output parallel)-IPOS (input parallel and output series) converter-based dc distribution system. The ultra-low loss bi-directional switch can be developed by the GaN power device because of the low on-resistance, the high-speed switching behavior and its own device structure. The buck-rectifier using the GaN bi-directional switches has the potential to achieve higher power density than the commonly utilized boost-rectifier. Availability of the GaN-HEMT (high electron mobility transistor) for the buck rectifier has been verified taking the theoretical limit of the on-resistance and the switching loss energy into account. Design consideration for a high power density buck-rectifier has been also conducted and the application effect of the GaN bidirectional switches has been evaluated quantitatively. The ISOP-IPOS converter-based dc (direct current) distribution system takes full advantage of the buck-rectifier and the rectifier using GaN devices contributes to realizing higher power density dc distribution system.展开更多
文摘This paper intreduced a high-precision high-voltage elec- trostatic generator which utilized STM32F103 as the main coutroller. The hardware and software design of the system were detailed. The full use of ample on-chip resources of STM32F103, such as ADC and the PWM output of timer, contributed to the small size and low cost of the system. The 16-bit PWM signals, generated by the timer on chip, served to adjust the our-put voltage accurately. The tot~ screen was responsible for the setting and display of output voltage, and the friendly humawcomptaer interaction was built. Experimental results indicated that this high-voltage static generator was of high precision and great practicability for application.
文摘GaN (gallium nitride) buck-rectifier has been proposed to realize high power density ISOP (input series and output parallel)-IPOS (input parallel and output series) converter-based dc distribution system. The ultra-low loss bi-directional switch can be developed by the GaN power device because of the low on-resistance, the high-speed switching behavior and its own device structure. The buck-rectifier using the GaN bi-directional switches has the potential to achieve higher power density than the commonly utilized boost-rectifier. Availability of the GaN-HEMT (high electron mobility transistor) for the buck rectifier has been verified taking the theoretical limit of the on-resistance and the switching loss energy into account. Design consideration for a high power density buck-rectifier has been also conducted and the application effect of the GaN bidirectional switches has been evaluated quantitatively. The ISOP-IPOS converter-based dc (direct current) distribution system takes full advantage of the buck-rectifier and the rectifier using GaN devices contributes to realizing higher power density dc distribution system.