The electronic structure and optical properties of novel Na-hP4 high pressure phase at different pressures(260,320,400 and 600 GPa)were investigated by the density functional theory(DFT)with the generalized gradient a...The electronic structure and optical properties of novel Na-hP4 high pressure phase at different pressures(260,320,400 and 600 GPa)were investigated by the density functional theory(DFT)with the generalized gradient approximation(GGA)for the exchange and correlation energy.The band structure along the higher symmetry axes in the Brillouin zone,the density of states(DOS) and the partial density of states(PDOS)were presented.The band gap increases and the energy band expands to some extent with the pressure increasing.The dielectric function,reflectivity,energy-loss function,optical absorption coefficient,optical conductivity, refractive index and extinction coefficient were calculated for discussing the optical properties of Na-hP4 high pressure phase at different pressures.展开更多
Abstract: This paper presents results from an on-going research project on pressure tolerant power electronics at SINTEF Energy Research, Norway. The driving force for this research is to enable power electronic comp...Abstract: This paper presents results from an on-going research project on pressure tolerant power electronics at SINTEF Energy Research, Norway. The driving force for this research is to enable power electronic components to operate in pressurized dielectric environment. The intended application is the converters for operation down to 3,000 meters ocean depth, primarily for subsea oil and gas processing. The paper focuses on the needed modifications to a general purpose gate driver for IGBT (insulated gate bipolar transistors) that will give pressure tolerance. Adaptations and modifications of the individual driver components are presented.The results from preliminary testing are promising, which shows that the considered adaptations give feasible solutions.展开更多
In this paper, performance of PECVD SiO 2 /Si 3 N 4 double layers electrets with different thicknesses were investigated detailedly in respect of chargeability, storage charge stability in high temperature and reliabi...In this paper, performance of PECVD SiO 2 /Si 3 N 4 double layers electrets with different thicknesses were investigated detailedly in respect of chargeability, storage charge stability in high temperature and reliability in high humidity environment. Samples with different thicknesses of Si 3 N 4 and SiO 2 were prepared on Pyrex 7740 glass substrates and characterized by isothermal and high humidity charge decay. The results of experiment approved that the PECVD SiO 2 /Si 3 N 4 double layers electrets on glass substrate has as good chargeability and charge stability in high temperature and high humidity environment as thermal oxidation or APCVD/LPCVD ones on silicon substrates. The experiment results indicated that a Si 3 N 4 layer no less than 50 nm is necessary for good charge stability in high temperature and a Si 3 N 4 layer thicker than 500 nm decreases the chargeability. Even a 2 nm Si 3 N 4 layer is enough to significantly improve the charge stability in high humidity environment. Thick SiO 2 layer can increase the surface potential of electrets under the same charging condition and its charge stability in high temperature. However, the electrets with high surface potential also exhibit poor uniformity of charge stability in high humidity environment.展开更多
基金Project(50474051) supported by the National Natural Science Foundation of China
文摘The electronic structure and optical properties of novel Na-hP4 high pressure phase at different pressures(260,320,400 and 600 GPa)were investigated by the density functional theory(DFT)with the generalized gradient approximation(GGA)for the exchange and correlation energy.The band structure along the higher symmetry axes in the Brillouin zone,the density of states(DOS) and the partial density of states(PDOS)were presented.The band gap increases and the energy band expands to some extent with the pressure increasing.The dielectric function,reflectivity,energy-loss function,optical absorption coefficient,optical conductivity, refractive index and extinction coefficient were calculated for discussing the optical properties of Na-hP4 high pressure phase at different pressures.
文摘Abstract: This paper presents results from an on-going research project on pressure tolerant power electronics at SINTEF Energy Research, Norway. The driving force for this research is to enable power electronic components to operate in pressurized dielectric environment. The intended application is the converters for operation down to 3,000 meters ocean depth, primarily for subsea oil and gas processing. The paper focuses on the needed modifications to a general purpose gate driver for IGBT (insulated gate bipolar transistors) that will give pressure tolerance. Adaptations and modifications of the individual driver components are presented.The results from preliminary testing are promising, which shows that the considered adaptations give feasible solutions.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2009CB320300)
文摘In this paper, performance of PECVD SiO 2 /Si 3 N 4 double layers electrets with different thicknesses were investigated detailedly in respect of chargeability, storage charge stability in high temperature and reliability in high humidity environment. Samples with different thicknesses of Si 3 N 4 and SiO 2 were prepared on Pyrex 7740 glass substrates and characterized by isothermal and high humidity charge decay. The results of experiment approved that the PECVD SiO 2 /Si 3 N 4 double layers electrets on glass substrate has as good chargeability and charge stability in high temperature and high humidity environment as thermal oxidation or APCVD/LPCVD ones on silicon substrates. The experiment results indicated that a Si 3 N 4 layer no less than 50 nm is necessary for good charge stability in high temperature and a Si 3 N 4 layer thicker than 500 nm decreases the chargeability. Even a 2 nm Si 3 N 4 layer is enough to significantly improve the charge stability in high humidity environment. Thick SiO 2 layer can increase the surface potential of electrets under the same charging condition and its charge stability in high temperature. However, the electrets with high surface potential also exhibit poor uniformity of charge stability in high humidity environment.