同塔双回高压直流线路间存在复杂的故障电磁耦合关系,大大增加了各回高压直流线路故障选线的难度。为此,基于同塔双回高压直流线路故障行波的相模变换,分析了基于现有单回线路模量行波计算方法所得到的同塔双回高压直流线路故障回和非...同塔双回高压直流线路间存在复杂的故障电磁耦合关系,大大增加了各回高压直流线路故障选线的难度。为此,基于同塔双回高压直流线路故障行波的相模变换,分析了基于现有单回线路模量行波计算方法所得到的同塔双回高压直流线路故障回和非故障回的模量行波特点;利用故障回和非故障回地模波和线模波的积分比值以及地模波的极性的差异,提出了1种基于单回线路信息的同塔双回高压直流线路故障选线方法。基于PSCAD/EMTDC的溪洛渡—广东±500 k V同塔双回高压直流输电系统的仿真结果表明,该方法能在行波到达后1 ms时间内快速、可靠地识别出故障极线,且所需采样频率为与实际工程相符的10 k Hz,具有工程实用性。展开更多
文摘同塔双回高压直流线路间存在复杂的故障电磁耦合关系,大大增加了各回高压直流线路故障选线的难度。为此,基于同塔双回高压直流线路故障行波的相模变换,分析了基于现有单回线路模量行波计算方法所得到的同塔双回高压直流线路故障回和非故障回的模量行波特点;利用故障回和非故障回地模波和线模波的积分比值以及地模波的极性的差异,提出了1种基于单回线路信息的同塔双回高压直流线路故障选线方法。基于PSCAD/EMTDC的溪洛渡—广东±500 k V同塔双回高压直流输电系统的仿真结果表明,该方法能在行波到达后1 ms时间内快速、可靠地识别出故障极线,且所需采样频率为与实际工程相符的10 k Hz,具有工程实用性。