The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transfor...The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transformation of the alloy were examined by optical microscope,X-ray diffractometer(XRD) and differential scanning calorimeter(DSC).Based on the experimental results,the effects of high pressure treatment on the microstructure and thermal expansion of Cu-Zn alloy were investigated.The results show that the high pressure treatment can refine the grain and increase the thermal expansion coefficient of the Cu-Zn alloy,resulting in that the thermal expansion coefficient exhibits a high peak value on the α-T curve,and the peak value decreases with increasing the pressure.展开更多
采用NGFM(New version of Ghost Fluid Method)处理复杂计算域的固壁边界,用RGFM(Real Ghost Fluid Method)求解气-水界面附近网格节点的状态参数,从而在直角坐标系下对复杂计算域的水下高压气泡膨胀问题进行数值模拟。流场控制方程选用...采用NGFM(New version of Ghost Fluid Method)处理复杂计算域的固壁边界,用RGFM(Real Ghost Fluid Method)求解气-水界面附近网格节点的状态参数,从而在直角坐标系下对复杂计算域的水下高压气泡膨胀问题进行数值模拟。流场控制方程选用Euler方程,用五阶WENO格式离散空间导数项,二阶Runge-Kutta法离散时间导数项;气-水界面追踪使用Level Set方法,对Level Set方程,用五阶HJ-WENO(Hamilton-Jacobi WENO)和三阶Runge-Kutta法求解。将计算结果与任意坐标系下的结果进行对比,验证了NGFM在笛卡尔网格中处理复杂形状固壁边界的可行性。得到了水下流场压力等值线图、高压气泡的演变过程以及特定点处的压力-时间曲线。计算结果表明,高压气泡在固壁反射激波的作用下,膨胀过程受到抑制;强激波在固壁的反射会导致固壁附近出现大范围的空化流动。展开更多
基金Project(11541012) supported by the Scientific Research Foundation of Heilongjiang Provincial Education Department,China
文摘The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transformation of the alloy were examined by optical microscope,X-ray diffractometer(XRD) and differential scanning calorimeter(DSC).Based on the experimental results,the effects of high pressure treatment on the microstructure and thermal expansion of Cu-Zn alloy were investigated.The results show that the high pressure treatment can refine the grain and increase the thermal expansion coefficient of the Cu-Zn alloy,resulting in that the thermal expansion coefficient exhibits a high peak value on the α-T curve,and the peak value decreases with increasing the pressure.