Flow behavior and microstructure of a homogenized ZK60 magnesium alloy were investigated during compression in the temperature range of 250-400 ℃ and the strain rate range of 0.1-50 s^-1. The results showed that dyna...Flow behavior and microstructure of a homogenized ZK60 magnesium alloy were investigated during compression in the temperature range of 250-400 ℃ and the strain rate range of 0.1-50 s^-1. The results showed that dynamic recrystallization (DRX) developed mainly at grain boundaries at lower strain rate (0.1-1 s^-1), while in the case of higher strain rate (10-50 s^-1), DRX occurred extensively both at twins and grain boundaries at all temperature range, especially at temperature lower than 350 ℃, which resulted in a more homogeneous microstructure than that under other deformation conditions. The DRX extent determines the hot workability of the workpiece, therefore, hot deformation at the strain rate of 10-50 s^-1 and in the temperature range of 250-350 ℃ was desirable for ZK60 alloy. Twin induced DRX during high strain rate compression included three steps. Firstly, twins with high dislocation subdivided the initial grain, then dislocation arrays subdivided the twins into subgrains, and after that DRX took place with a further increase of strain.展开更多
The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the tem...The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.展开更多
The deformation behavior of a new Al-Zn-Cu-Mg-Sc-Zr alloy was investigated with compression tests in temperature range of 380?470 ℃ and strain rate range of 0.001-10 s-1 using Gleeble 1500 system, and the associated ...The deformation behavior of a new Al-Zn-Cu-Mg-Sc-Zr alloy was investigated with compression tests in temperature range of 380?470 ℃ and strain rate range of 0.001-10 s-1 using Gleeble 1500 system, and the associated microstructural evolutions were studied by metallographic microscopy and transmission electron microscopy. The results show that true stress—strain curves exhibit a peak stress, followed by a dynamic flow softening at low strains (ε<0.05). The stress decreases with increasing deformation temperature and decreasing strain rate, which can be represented by a Zener-Hollomon exponential equation with the activation energy for deformation of 157.9 kJ/mol. The substructure in the deformed specimens consists of few fine precipitates with equaixed polygonized subgrains in the elongated grains and developed serrations at the grain boundaries. The dynamic flow softening is attributed mainly to dynamic recovery and dynamic recrystallization.展开更多
Equilibrium sorption amount, desorption diffusion coefficients and sorption diffusion coefficients of CO2 in poly(l-lactic acid) (PLLA) films at elevated pressures were determined by the gravimetric method, in whi...Equilibrium sorption amount, desorption diffusion coefficients and sorption diffusion coefficients of CO2 in poly(l-lactic acid) (PLLA) films at elevated pressures were determined by the gravimetric method, in which the Fick's diffusion model was applied to analyze both the desorption and sorption processes. The equilibrium sorption amount of CO2 in PLLA increased with lowering temperature and elevating pressure at the temperature range from 40 to 60 ℃ and pressure from 10^4 to 2x10^4 kPa. Desorption diffusion coefficients were greatly influenced by the equilibrium sorption amount, and they were in the same order of magnitude as the sorption diffusion coefficients. The scan electron microscope (SEM) photos demonstrated that there was no foaming phenomenon of the PLLA film during desorption and sorption processes. The XRD spectra implied that the crystalline degree of PLLA film decreased after CO2 processing. It was concluded that PLLA polymer could be well swollen and plasticized by supercritical CO2.展开更多
High temperature tensile ductilities and deformation mechanisms of an extruded and rolled AZ31 Mg alloy were investigated.Elongation-to-failure tests were conducted under constant T-head velocity and constant temperat...High temperature tensile ductilities and deformation mechanisms of an extruded and rolled AZ31 Mg alloy were investigated.Elongation-to-failure tests were conducted under constant T-head velocity and constant temperatures ranging from 300℃ to 450℃.Strain-rate-change tests were conducted under varying strain rate from 5×10-5s-1to 2×10-2s-1and constant temperature from 300℃ to 450℃.Experimental results show that the maximum elongation of the AZ31 alloy with an average grain size of about 19μm is 117%at strain rate of 10- 3s-1 and temperature of 450℃.Stress exponent and activation energy were characterized to clarify the deformation mechanisms.The enhanced ductility is dominated by solute drag dislocation creep,and the major failure mechanism is cavity growth and interlinkage.展开更多
The coarsening behavior ofγʹprecipitate phase at different temperatures and the compressive performance of novel Co-Ni-Al-W superalloy were investigated.Experiment results show that the evolution of the mean radius a...The coarsening behavior ofγʹprecipitate phase at different temperatures and the compressive performance of novel Co-Ni-Al-W superalloy were investigated.Experiment results show that the evolution of the mean radius and volume fraction of theγʹphase obeys the classical Lifshitz-Slyozov-Wagner model.The coarsening rate of theγʹphase exhibits a significant dependence on the aging temperature,which increases from 1.30×10^(−27)m^(3)/s at 800℃to 9.56×10−27 m^(3)/s at 900℃.The activation energy ofγʹphase is mainly influenced by the W diffusion in theγmatrix,presenting as 210 kJ/mol.The prepared Co-Ni-Al-W alloy possesses superb comprehensive properties,particularly the good combination of highγʹsolvus temperature(1221℃)and low density(8.7 g/cm^(3)).Besides,the compressive yield strength of the Co-Ni-Al-W alloy at ambient and high temperatures are higher than that of otherγʹ-strengthened Co-based superalloys.The compressive yield strength of the Co-Ni-Al-W alloy at 850℃is as high as 774 MPa.展开更多
The impact of a rigid body(protected structure) together with cushion material(cellular metal foam) on hard ground from a fixed height was investigated.An analytical one-degree-of-freedom colliding model(ODF-CM) was e...The impact of a rigid body(protected structure) together with cushion material(cellular metal foam) on hard ground from a fixed height was investigated.An analytical one-degree-of-freedom colliding model(ODF-CM) was established to analyze the protection ability and energy absorption by the foam under low velocity impact conditions.For validation,drop hammer experiments were carried out for high porosity closed-cell aluminum foam specimens subjected to low velocity impact loading.The dynamic deformation behavior of the specimen was observed and the velocity attenuation of the drop hammer was measured.The results demonstrated that the aluminum foam had excellent energy absorption capabilities,with its dynamic compressive behavior similar to that obtained under quasi-static loading conditions.Finite element method(FEM) was subsequently employed to obtain stress distributions in the foam specimen.As the propagating period of stress in the specimen was far less than the duration of attenuation,the evolution of the stress was similar to that under quasi-static loading conditions and no obvious stress wave effect was observed,which agreed with the experimental observation.Finally,the predicted velocity attenuation by the ODF-CM was compared with both the experimental measurements and FEM simulation,and good agreements were achieved when the stress distribution was considered to be uniform and the "quasi-static" compressive properties are employed.展开更多
Experimental investigation was conducted to characterize the responses of pseudo-ductile cementitious composites (PDCCs) when subjected to uniaxial and biaxial compression.The PDCCs is a class of fiber reinforced ceme...Experimental investigation was conducted to characterize the responses of pseudo-ductile cementitious composites (PDCCs) when subjected to uniaxial and biaxial compression.The PDCCs is a class of fiber reinforced cementitious composites with ultra-high ductility by using a low volume fraction (2%) of polyvinyl alcohol (PVA) fiber.Two different strength grades of PDCC were examined with cubic specimen size of 100 mm in the tests.The specimens were loaded with a servo-hydraulic jack at different stress ratios.The principle stresses and strains of the specimens were recorded,and the failure modes with various stress states were examined.The test results indicated that the ultimate strength of PDCCs increased due to the lateral confinement in the other principal stress direction,and the maximum ultimate strength occurred at the biaxial stress ratio of 0.25,which was very different from common concrete material.For the PDCC specimens,the biaxial strength may be lower than the uniaxial strength when subjected to biaxial compression with the stress ratio of 1.0,and the failure mode showed a shear-type failure because of the bridging effect of fibers.Finally,a failure criterion was proposed for PDCCs under biaxial compression.展开更多
In the previous researches, it is known that the swirl flow in circular pipe causes the temperature separation. Recently, it is shown that the temperature separation occurs in a vortex chamber when compressed air are ...In the previous researches, it is known that the swirl flow in circular pipe causes the temperature separation. Recently, it is shown that the temperature separation occurs in a vortex chamber when compressed air are pumped into this device from the periphery. Especially, in a cavity installed in the periphery of the chamber, the highest temperature was observed. Therefore, it is expected that this device can be used as a heat source in the engineering field. In recent researches, the mechanism of temperature separation in vortex chamber has been investigated by some researchers. However, there are few researches for the effect of diameter and volume of vortex chamber, height of central rod and position of cavity on the temperature separation. Further, no detailed physical explanation has been made for the temperature separation phenomena in the vortex chamber. In the present study, the effects of chamber configuration and position of the cavity on temperature separation in the vortex chamber were investigated experimentally.展开更多
基金Graduate Innovation Project of Shanxi Normal University,Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi(No.2019L0469)Education Science Planning of Shanxi Province Special Projects of Military Training for Students and National Defense Education for Universities(No.GGF 19002)Cultivation Plan of Young Scientific Researchers in High Education Institutions of Shanxi Province
基金Project (14JJ6047) supported by the Natural Science Foundation of Hunan Province,ChinaProject (51274092) supported by the National Natural Science Foundation of ChinaProject (20120161110040) supported by the Doctoral Program of Higher Education ofChina
文摘Flow behavior and microstructure of a homogenized ZK60 magnesium alloy were investigated during compression in the temperature range of 250-400 ℃ and the strain rate range of 0.1-50 s^-1. The results showed that dynamic recrystallization (DRX) developed mainly at grain boundaries at lower strain rate (0.1-1 s^-1), while in the case of higher strain rate (10-50 s^-1), DRX occurred extensively both at twins and grain boundaries at all temperature range, especially at temperature lower than 350 ℃, which resulted in a more homogeneous microstructure than that under other deformation conditions. The DRX extent determines the hot workability of the workpiece, therefore, hot deformation at the strain rate of 10-50 s^-1 and in the temperature range of 250-350 ℃ was desirable for ZK60 alloy. Twin induced DRX during high strain rate compression included three steps. Firstly, twins with high dislocation subdivided the initial grain, then dislocation arrays subdivided the twins into subgrains, and after that DRX took place with a further increase of strain.
基金Project (51005112) supported by the National Natural Science Foundation of ChinaProject (2010ZF56019) supported by the Aviation Science Foundation of China+1 种基金Project (GJJ11156) supported by the Education Commission of Jiangxi Province, ChinaProject(GF200901008) supported by the Open Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, China
文摘The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.
基金Project(2006AA03Z523) supported by the National High-Tech Research and Development Program of China
文摘The deformation behavior of a new Al-Zn-Cu-Mg-Sc-Zr alloy was investigated with compression tests in temperature range of 380?470 ℃ and strain rate range of 0.001-10 s-1 using Gleeble 1500 system, and the associated microstructural evolutions were studied by metallographic microscopy and transmission electron microscopy. The results show that true stress—strain curves exhibit a peak stress, followed by a dynamic flow softening at low strains (ε<0.05). The stress decreases with increasing deformation temperature and decreasing strain rate, which can be represented by a Zener-Hollomon exponential equation with the activation energy for deformation of 157.9 kJ/mol. The substructure in the deformed specimens consists of few fine precipitates with equaixed polygonized subgrains in the elongated grains and developed serrations at the grain boundaries. The dynamic flow softening is attributed mainly to dynamic recovery and dynamic recrystallization.
基金Supported by the National Natura Science Foundation of China (21076185).
文摘Equilibrium sorption amount, desorption diffusion coefficients and sorption diffusion coefficients of CO2 in poly(l-lactic acid) (PLLA) films at elevated pressures were determined by the gravimetric method, in which the Fick's diffusion model was applied to analyze both the desorption and sorption processes. The equilibrium sorption amount of CO2 in PLLA increased with lowering temperature and elevating pressure at the temperature range from 40 to 60 ℃ and pressure from 10^4 to 2x10^4 kPa. Desorption diffusion coefficients were greatly influenced by the equilibrium sorption amount, and they were in the same order of magnitude as the sorption diffusion coefficients. The scan electron microscope (SEM) photos demonstrated that there was no foaming phenomenon of the PLLA film during desorption and sorption processes. The XRD spectra implied that the crystalline degree of PLLA film decreased after CO2 processing. It was concluded that PLLA polymer could be well swollen and plasticized by supercritical CO2.
基金Project(50801034)supported by the National Natural Science Foundation of ChinaProject(20060425)supported by the Scientific and Technological Research Key Lab Foundation of Liaoning Education Department,China
文摘High temperature tensile ductilities and deformation mechanisms of an extruded and rolled AZ31 Mg alloy were investigated.Elongation-to-failure tests were conducted under constant T-head velocity and constant temperatures ranging from 300℃ to 450℃.Strain-rate-change tests were conducted under varying strain rate from 5×10-5s-1to 2×10-2s-1and constant temperature from 300℃ to 450℃.Experimental results show that the maximum elongation of the AZ31 alloy with an average grain size of about 19μm is 117%at strain rate of 10- 3s-1 and temperature of 450℃.Stress exponent and activation energy were characterized to clarify the deformation mechanisms.The enhanced ductility is dominated by solute drag dislocation creep,and the major failure mechanism is cavity growth and interlinkage.
基金Natural Science Foundation of Liaoning Province(2023-MSLH-337)。
文摘The coarsening behavior ofγʹprecipitate phase at different temperatures and the compressive performance of novel Co-Ni-Al-W superalloy were investigated.Experiment results show that the evolution of the mean radius and volume fraction of theγʹphase obeys the classical Lifshitz-Slyozov-Wagner model.The coarsening rate of theγʹphase exhibits a significant dependence on the aging temperature,which increases from 1.30×10^(−27)m^(3)/s at 800℃to 9.56×10−27 m^(3)/s at 900℃.The activation energy ofγʹphase is mainly influenced by the W diffusion in theγmatrix,presenting as 210 kJ/mol.The prepared Co-Ni-Al-W alloy possesses superb comprehensive properties,particularly the good combination of highγʹsolvus temperature(1221℃)and low density(8.7 g/cm^(3)).Besides,the compressive yield strength of the Co-Ni-Al-W alloy at ambient and high temperatures are higher than that of otherγʹ-strengthened Co-based superalloys.The compressive yield strength of the Co-Ni-Al-W alloy at 850℃is as high as 774 MPa.
基金supported by the National Basic Research Program of China ("973" Project)(Grant No. 2011CB610305)the National "111" Project of China (Grant No. B06024)the National Natural Science Foundation of China (Grant Nos. 10825210,11072188)
文摘The impact of a rigid body(protected structure) together with cushion material(cellular metal foam) on hard ground from a fixed height was investigated.An analytical one-degree-of-freedom colliding model(ODF-CM) was established to analyze the protection ability and energy absorption by the foam under low velocity impact conditions.For validation,drop hammer experiments were carried out for high porosity closed-cell aluminum foam specimens subjected to low velocity impact loading.The dynamic deformation behavior of the specimen was observed and the velocity attenuation of the drop hammer was measured.The results demonstrated that the aluminum foam had excellent energy absorption capabilities,with its dynamic compressive behavior similar to that obtained under quasi-static loading conditions.Finite element method(FEM) was subsequently employed to obtain stress distributions in the foam specimen.As the propagating period of stress in the specimen was far less than the duration of attenuation,the evolution of the stress was similar to that under quasi-static loading conditions and no obvious stress wave effect was observed,which agreed with the experimental observation.Finally,the predicted velocity attenuation by the ODF-CM was compared with both the experimental measurements and FEM simulation,and good agreements were achieved when the stress distribution was considered to be uniform and the "quasi-static" compressive properties are employed.
基金supported by the National Natural Science Foundation of China (Grant No. 51278118)the National Basic Research Program of China ("973" Program) (Grant No. 2009CB623200)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Experimental investigation was conducted to characterize the responses of pseudo-ductile cementitious composites (PDCCs) when subjected to uniaxial and biaxial compression.The PDCCs is a class of fiber reinforced cementitious composites with ultra-high ductility by using a low volume fraction (2%) of polyvinyl alcohol (PVA) fiber.Two different strength grades of PDCC were examined with cubic specimen size of 100 mm in the tests.The specimens were loaded with a servo-hydraulic jack at different stress ratios.The principle stresses and strains of the specimens were recorded,and the failure modes with various stress states were examined.The test results indicated that the ultimate strength of PDCCs increased due to the lateral confinement in the other principal stress direction,and the maximum ultimate strength occurred at the biaxial stress ratio of 0.25,which was very different from common concrete material.For the PDCC specimens,the biaxial strength may be lower than the uniaxial strength when subjected to biaxial compression with the stress ratio of 1.0,and the failure mode showed a shear-type failure because of the bridging effect of fibers.Finally,a failure criterion was proposed for PDCCs under biaxial compression.
文摘In the previous researches, it is known that the swirl flow in circular pipe causes the temperature separation. Recently, it is shown that the temperature separation occurs in a vortex chamber when compressed air are pumped into this device from the periphery. Especially, in a cavity installed in the periphery of the chamber, the highest temperature was observed. Therefore, it is expected that this device can be used as a heat source in the engineering field. In recent researches, the mechanism of temperature separation in vortex chamber has been investigated by some researchers. However, there are few researches for the effect of diameter and volume of vortex chamber, height of central rod and position of cavity on the temperature separation. Further, no detailed physical explanation has been made for the temperature separation phenomena in the vortex chamber. In the present study, the effects of chamber configuration and position of the cavity on temperature separation in the vortex chamber were investigated experimentally.