With the aggravation of global change, the response and adaptation of the unique ecosystem in Qinghai-Tibet Plateau to global change have been increasingly concerned by scientific community day by day, which makes the...With the aggravation of global change, the response and adaptation of the unique ecosystem in Qinghai-Tibet Plateau to global change have been increasingly concerned by scientific community day by day, which makes the sensitivity and fragility of this ecosystem in response to global change widely recognized by scholars. On the basis of introducing the present research process on the degenerate mechanisim, measures of and approaches to recovery, carbon cycle and primary productivity toward global change, we put forward several propositions on studying the alpine grassland ecosystem in Northern Tibetan Plateau.展开更多
On the Loess Plateau, water is the main limiting factors for vegetation growth. Root distribution characters have special ecological meaning as it reflected the utilizations of trees to the environments. Even-aged sta...On the Loess Plateau, water is the main limiting factors for vegetation growth. Root distribution characters have special ecological meaning as it reflected the utilizations of trees to the environments. Even-aged stands ofRobinia pseudoacacia on slope lands facing south and north were selected as sampling plots for root distribution investigation. Investigatiing results showed that indicated that on all sites, root biomass decreased with depth, and the distribution depth of fine root was deeper than that of coarser root. The results of variance analysis indicated that there were great differences in root biomass among different diameter classes, and coarser root was the main sources of variance, and the root biomass, especially fine root (?<3mm) biomass on northern exposition sites was bigger than that on southern exposition sites. Analysis of the vertical root distribution parameters, root extinction coefficient, β indicated that the value of β on northern exposition was more than 0.982, while the value of β on southern exposition was less than 0.982, which indicated that the vertical root distribution depth ofRobinia pseudoacacia on southern exposition was deeper than that on southern exposition. And the distribution depth of fine roots (Φ<1mm) was deeper than that of thicker roots(Φ<3mm), which was in favor of the uptake of water and nutrients from deeper layers, helped the trees to adapt the arid environment, and promoted the growth of the upper parts of the tree. Keywords Root diameter classes - Variance analysis - Root extinction coefficient - Vertical distribution characters - Site conditions - Loess Plateau CLC number S792.27.01 Document code A Foundation Item: This research was supported by National Natural Science Foundation of China (30371150 and 40371075).Biography: LI Peng (1974-) male, post: Ph. D. in Northwest Scientific & Technological University of Agriculture and Forestry, Yangling 712100, Shaanxi Province, P. R. China. Tel: 029-82312651.Responsible editor: Chai Ruihal展开更多
[Objective] The study aimed to investigate the effects of temperature and nitrogen input on nitrogen mineralization in alpine soils on the Tibetan Plateau.[Method]An incubation experiment in the laboratory was conduct...[Objective] The study aimed to investigate the effects of temperature and nitrogen input on nitrogen mineralization in alpine soils on the Tibetan Plateau.[Method]An incubation experiment in the laboratory was conducted using three alpine soils.These soils were collected from the top 10 cm depth in three grassland types:alpine meadow in Haibei,alpine steppe in Naqu and alpine wetland in Dangxiong.[Result] Temperature significantly affected nitrogen mineralization in alpine soils of three grassland types.The mineralization rate in alpine steppe soil rose with the rise of temperature,while the mineralization rate in the alpine meadow soil and alpine wetland soil decreased with the rise of temperature.Nitrogen input had no significant effect on nitrogen mineralization in the alpine meadow soil,but significantly increased nitrogen mineralization in the alpine steppe soil and the alpine wetland soil.Grassland types significantly affected nitrogen mineralization in alpine grasslands.[Conclusion] The effects of temperature and nitrogen input on nitrogen mineralization in alpine soils on the Tibetan Plateau were significant.And those different effects depended on different types of grassland.展开更多
The paper aims to study the impacts and countermeasures of climate change on animal husbandry in Qinghai plateau and its surrounding area,and evaluate the effect of countermeasures.Results showed that:First,the annua...The paper aims to study the impacts and countermeasures of climate change on animal husbandry in Qinghai plateau and its surrounding area,and evaluate the effect of countermeasures.Results showed that:First,the annual mean temperature,annual mean maximum temperature and annual mean minimum temperature showed an increasing trend in Qinghai plateau during the time from 1961 to 2008; the annual precipitation had not obvious change,but the obvious feature of seasonal change; wind speed and sunshine hours showed a decreasing trend during the time from 1961 to 2008.Secondly,under the current climate condition,grassland productivity showed a decreasing trend,and the grassland theoretical capacity affected by grassland productivity decreased too; warm winter was in favor of livestock overwintering safely,which resulted in a high level of the survival rate of young stock; temperature increasing and precipitation decreasing were beneficial to the fatness of livestock,but the meat yield of livestock was affected by some negative factors such as grassland degradation; livestock diseases had a close relationship with weather condition,and adverse weather condition may arose many diseases of livestock.Thirdly,in view of the current problems of livestock production,we took a series of countermeasures including grass industry construction,livestock improvement,developing new modes of animal husbandry,control and prevention of stockbreeding diseases and insect pests and recovery of meteorological disasters,which played a important role in promoting grassland productivity,solving the problem of the imbalances between livestock and forage,protecting the ecological environment and improving livestock performance.展开更多
Based on the research of slope farmland in northern Shaanxi,the extension decision model was set up by the original theory of extenics. The optimal solution is obtained by expanding analysis,provide scientific basis f...Based on the research of slope farmland in northern Shaanxi,the extension decision model was set up by the original theory of extenics. The optimal solution is obtained by expanding analysis,provide scientific basis for decision-making and increase the economic benefits to farmers.展开更多
[Objective] The aim was to study influences of different land use ways on soil qualities in plateau karst depression.[Method] Different land use types were divided by topographic map of 1∶10 000 scales and soil prope...[Objective] The aim was to study influences of different land use ways on soil qualities in plateau karst depression.[Method] Different land use types were divided by topographic map of 1∶10 000 scales and soil properties of physics and chemistry were analyzed.[Result] The results showed that the variation trend of soil depth(A+B stratum)was slope plough(include returning farm to forest)land>natural forest land>planted forest land>shrub forest land,and relative indexes changing regularities of soil...展开更多
Using gradually regression analysis to establish the driving force model of utilized change of cultivated land in Gonghe County, and using path analysis, correlation analysis, partial correlation analysis and system d...Using gradually regression analysis to establish the driving force model of utilized change of cultivated land in Gonghe County, and using path analysis, correlation analysis, partial correlation analysis and system dynamics method to inspect the effect of driving changing on cultivated land change under different change situations. Driving factors, action mechanism and process of utilized change of cultivated land were analyzed from the county territory scale level. At last, some corresponding policies and measures were put forward.展开更多
We assessed habitat preference and population status of the Sichuan Jay (Perisoreus internigrans),a poorly known Chinese endemic bird,at two sites (Zhuoni and Jiuzhaigou) in the Qinghai-Tibetan plateau between 2001 an...We assessed habitat preference and population status of the Sichuan Jay (Perisoreus internigrans),a poorly known Chinese endemic bird,at two sites (Zhuoni and Jiuzhaigou) in the Qinghai-Tibetan plateau between 2001 and 2004.Mean group size was 3.8 jays.Each group occupied a mean home range of 42.0 ha during the breeding season,and the mean internest distance was 2.7 km.These data indicated that the jays used less than ten percent of the available habitats and occurred at an overall density of only 0.6 jays per km2.Radio-tracked Sichuan Jays had a strong preference for mature montane coniferous forests and avoided areas dominated by shrubs,while the utilization of young conifers,grassland,and human residential habitat types did not differ significantly from the values expected from the home-range availabilities of these habitats generally.展开更多
As the main external pollution source of lake,nitrogen and phosphorus from agricultural non-point source make a great contribution to the lake eutrophication pollution.Wetland lakefront zone which plays a key role in ...As the main external pollution source of lake,nitrogen and phosphorus from agricultural non-point source make a great contribution to the lake eutrophication pollution.Wetland lakefront zone which plays a key role in externally agricultural non-point source pollution is considered as the biggest barrier for controlling external pollution.In this research,the Jian lake plateau Zizania latifolia wetland lakefront zone was selected for agricultural non-point source pollutions control with the systematic field research,and the lakefront zone was approved to have an effective purification effect on nitrogen and phosphorus from Jinlong River; the theoretical mechanism of lakefront zone removing nutrient was also investigated.Z.latifolia wetland lakefront zone could remove nitrogen and phosphorus from Jinlong River and the removal ratio can reach 55.8-62.52% and 59.47-69.81% respectively.So,we can indicate that the Jian Lake plateau Z.latifolia wetland lakefront zone had a good effect on controlling agricultural non-point source pollution and protecting the environment.展开更多
Although snow cover plays an important role in structuring plant diversity in the alpine zone, there are few studies on the relationship between snow cover and species diversity of alpine meadows on the eastern Qingha...Although snow cover plays an important role in structuring plant diversity in the alpine zone, there are few studies on the relationship between snow cover and species diversity of alpine meadows on the eastern Qinghai-Tibetan Plateau. To assess the effect of snow cover on plant species diversity of alpine meadows, we used ten parallel transects of 60 m × 1 m for this study and described the changes in species diversity and composition associated with snow depth. With the division of snow depth into six classes, the highest species richness (S) and species diversity (H′) occurred with an intermediate snow depth, i.e., class Ⅲ and class Ⅳ, showing a unimodal curve with the increase in snow depth. The relationship between snow depth and plant diversity (both richness and Shannon index) could be depicted by quadratic equations. There was no evident relationship between diversity (both S and H′) and soil water content, which implied that other more important factors influenced species diversity. The patterns of diversity found in our study were largely attributed to freeze-thaw alteration, length of growing season and disturbances of livestock grazing. Furthermore, snow depth affected species composition, as evaluated by the Sorensen's index of similarity. In addition, almost all species limited to one snow depth class were found only in class Ⅲand class Ⅳ, indicating that intermediate snow depth was suitable for the survival and growth of many alpine species.展开更多
Cropland (CP),native grassland (NG) and two shrub land treatments which were converted from cropland in 1985:seabuckthorn (Hippophae rhamnoides L.) (ST),and branchytamarisk (Tamarix ramosissima) (BT) were investigated...Cropland (CP),native grassland (NG) and two shrub land treatments which were converted from cropland in 1985:seabuckthorn (Hippophae rhamnoides L.) (ST),and branchytamarisk (Tamarix ramosissima) (BT) were investigated to evaluate effects of land use conversion on soil organic carbon (SOC) and soil nutrients in the semi-arid region of the Loess Plateau of China.Total organic carbon (TOC),light fraction organic carbon (LFOC),heavy fraction organic carbon (HFOC),total N (TN),nitrate nitrogen (NO 3-N) and nitrite nitrogen (NO 2-N),ammonium nitrogen (NH + 4-N),total P,and available P (AP) were measured.The results showed that SOC in NG,ST and BT were 12.7%,27.7% and 34.8% higher than that of the cropland,respectively.LFOC,light fraction (LF) dry matter,ratio of TOC to TN (C/N) and the ratio of TOC to AP (C/P) were higher in the shrub land or native grassland than in the cropland.Cropland had the highest TN,the sum of NO 3-N and NO 2-N,TP and AP due to the use of chemical fertilizers.TOC significantly correlated with LFOC,HFOC and C/N.LFOC significantly correlated with dry matter of the LF and C/N.TN,the sum of NO 3-N and NO 2-N and AP were significantly negatively correlated with TOC and LFOC.Therefore,land use conversion from cropland to shrub land,or maybe grassland,contributed to SOC sequestration and improved soil nutrients stabilization.展开更多
In this paper a geomorphic-centered system was proposed for classifying the wetlands on the Qinghai-Tibet Plateau in western China, where the flora comprises primarily grasses. Although the geomorphic properties (e.g....In this paper a geomorphic-centered system was proposed for classifying the wetlands on the Qinghai-Tibet Plateau in western China, where the flora comprises primarily grasses. Although the geomorphic properties (e.g., elevation and morphology) of wetlands form the primary criteria of classification, this system also takes hydrological processes into implicit consideration. It represents an improvement over the hydrogeomorphic perspective as the relative importance of the two components (wetness and landform) of wetlands is clearly differentiated. This geomorphic-centered perspective yields insights into the hydrogeomorphic dynamics of plateau wetlands while indicates their vulnerability to change and degradation indirectly. According to this geomorphic-centered perspective, all plateau wetlands fall into one of the seven types of alpine, piedmont, valley, terrace, floodplain, lacustrine, and riverine in three elevational categories of upland, midland, and lowland. Upland (alpine and piedmont) wetlands with the steepest topography are the most sensitive to change whereas midland (floodplain, terrace and valley) wetlands are less vulnerable to degradation owing to a high water reserve except terrace wetlands. They have a dry surface caused by infrequent hydrological replenishment owing to their higher elevation than the channel. Low lying (lacustrine and riverine) wetlands are the most resilient. The geomorphic-centered perspective developed in this paper provides a framework for improving recognition and management of wetlands on the Plateau. Resilient wetlands can be grazed more intensively without the risk of degradation. Fragile and vulnerable wetlands require careful managementto avoid degradation.展开更多
The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961-2003 across ...The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961-2003 across the Qinghai-Tibet Plateau. The results show that temperature variations not only depend on altitude but also latitude, and there is a gradual decrease in temperature with the increasing altitude and latitude. The overall trend for the vertical temperature lapse rate for the whole plateau is approximately linear. Three methods, namely multivariate composite analysis, simple correlation and traditional stepwise regression, were applied to analyze these three correlations. The results assessed with the first method are well matched to those with the latter two methods. The apparent mean annual near-surface lapse rate is -4.8 ℃ /km and the latitudinal effect is -0.87 ℃ /°latitude. In summer, the altitude influences the temperature variations more significantly with a July lapse rate of -4.3℃/km and the effect of latitude is only -0.28℃ /°latitude. In winter, the reverse happens. The temperature decrease is mainly due to the increase in latitude. The mean January lapse rate is -5.0℃/km, while the effect of latitude is -1.51℃ /°latitude. Comparative analysis for pairs of adjacent stations shows that at a small spatial scale the difference in altitude is the dominant factor affecting differences in mean annual near-surface air temperature, aided to some extent bydifferences of latitude. In contrast, the lapse rate in a small area is greater than the overall mean value for the Qinghai-Tibet Plateau (5 to 13℃ /km). An increasing trend has been detected for the surface lapse rate with increases in altitude. The temperature difference has obvious seasonal variations, and the trends for the southern group of stations (south of 33 o latitude) and for the more northerly group are opposite, mainly because of the differences in seasonal variation at low altitudes. For yearly changes, the temperature for high-altitude stations occurs earlier clearly. Temperature datasets at high altitude stations are well-correlated, and those in Nanjing were lagged for 1 year but less for contemporaneous correlations. The slope of linear trendline of temperature change for available years is clearly related to altitude, and the amplitude of temperature variation is enlarged by high altitude. The change effect in near-surface lapse rate at the varying altitude is approximately 1.0℃ /km on the rate of warming over a hundred-year period.展开更多
Changes in vegetation phenology are key indicators of the response of ecosystems to climate change.Therefore,knowledge of growing seasons is essential to predict ecosystem changes,especially for regions with a fragile...Changes in vegetation phenology are key indicators of the response of ecosystems to climate change.Therefore,knowledge of growing seasons is essential to predict ecosystem changes,especially for regions with a fragile ecosystem such as the Loess Plateau.In this study,based on the normalized difference vegetation index(NDVI) data,we estimated and analyzed the vegetation phenology in the Loess Plateau from 2000 to 2010 for the beginning,length,and end of the growing season,measuring changes in trends and their relationship to climatic factors.The results show that for 54.84% of the vegetation,the trend was an advancement of the beginning of the growing season(BGS),while for 67.64% the trend was a delay in the end of the growing season(EGS).The length of the growing season(LGS) was extended for 66.28% of the vegetation in the plateau.While the temperature is important for the vegetation to begin the growing season in this region,warmer climate may lead to drought and can become a limiting factor for vegetation growth.We found that increasedprecipitation benefits the advancement of the BGS in this area.Areas with a delayed EGS indicated that the appropriate temperature and rainfall in autumn or winter enhanced photosynthesis and extended the growth process.A positive correlation with precipitation was found for 76.53% of the areas with an extended LGS,indicating that precipitation is one of the key factors in changes in the vegetation phenology in this water-limited region.Precipitation plays an important role in determining the phenological activities of the vegetation in arid and semiarid areas,such as the Loess Plateau.The extended growing season will significantly influence both the vegetation productivity and the carbon fixation capacity in this region.展开更多
The Badain Jaran Desert,located in the Alxa Plateau,Northwest China,features mega-dunes and a unique dune-lake alternation landscape.This paper presented the aeolian sediment structures of three representative dunes i...The Badain Jaran Desert,located in the Alxa Plateau,Northwest China,features mega-dunes and a unique dune-lake alternation landscape.This paper presented the aeolian sediment structures of three representative dunes in the Badain Jaran Desert using ground-penetrating radar (GPR).We processed and analyzed the GPR data and investigated the feasibility of using integrated GPR and sedimentological data to reconstruct dunes structure,sedimentary environment and geomorphological evolution.The results show that the internal structures of star dune and transverse dune represent various stages of mega-dune evolution: the main deposition processes of mega-dune are similar to those of transverse dunes but have a more complicated mechanism of sand transport and deposition because of the superimposition of dunes;the upper section of the mega-dune has a structure similar to that of star dune,with vertical aggradations on top.Diffraction hyperbolae in the GPR profile indicates that the presence of ancient dunes characterized by calcareous cementation layers is involved in the maintenance of mega-dunes,and water levels,shown by continuous,sub-horizontal GPR reflections,are supposed to be closely related to mega-dunes and the interdune lakes.Outcrop of wet sand and horizontal stratifications on the GPR image indicate moisture potentials with different levels inside mega-dunes.The multiplex geomorphology in the Badain Jaran Desert is the result of global climatic undulation,the unique geographical location,the geological structural features,etc.展开更多
Comparisons of the west Pacific subtropical high with the South Asia High are made using the NCEP/NCAR and ECMWF 500 hPa and 100 hPa monthly boreal geopotential height fields for the period 1961-2000. Discrepancies ar...Comparisons of the west Pacific subtropical high with the South Asia High are made using the NCEP/NCAR and ECMWF 500 hPa and 100 hPa monthly boreal geopotential height fields for the period 1961-2000. Discrepancies are found for the time prior to 1980. The west Pacific subtropical high in the NCEP/NCAR data is less intense than in ECMWF data before 1980. The range and strength of the west Pacific subtropical high variation described by the NCEP/NCAR data are larger than those depicted by ECMWF data. The same situation appears in the 100-hPa geopotential field. These discoveries suggest that the interdecadal variation of the two systems as shown by the NCEP/NCAR data may not be true. Besides, the South Asia High center in the NCEP/NCAR data is obviously stronger than in the ECMWF data during the periods 1969, 1979-1991 and 1992-1995. Furthermore, the range is larger from 1992 to 1995.展开更多
Tibet is located at the southwest boundary of China. It is the main body of the Qinghai-Tibet Plateau, the highest and the youngest plateau in the world. Owing to complicated geology, Neo-tectonic movements, geomorpho...Tibet is located at the southwest boundary of China. It is the main body of the Qinghai-Tibet Plateau, the highest and the youngest plateau in the world. Owing to complicated geology, Neo-tectonic movements, geomorphology, climate and plateau environment, various mountain hazards, such as debris flow, flash flood, landslide, collapse, snow avalanche and snow drifts, are widely distributed along the Jinsha River (the upper reaches of the Yangtze River), the Nu River and the Lancang River in the east, and the Yarlungzangbo River, the Pumqu River and the Poiqu River in the south and southeast of Tibet. The distribution area of mountain hazards in Tibet is about 589,000 km2, 49.3% of its total territory. In comparison to other mountain regions in China, mountain hazards in Tibet break out unexpectedly with tremendously large scale and endanger the traffic lines, cities and towns, farmland, grassland, mountain environment, and make more dangers to the neighboring countries, such as Nepal, India, Myanmar and Bhutan. To mitigate mountain hazards, some suggestions are proposed in this paper, such as strengthening scientific research, enhancing joint studies, hazards mitigation planning, hazards warning and forecasting, controlling the most disastrous hazards and forbidding unreasonable human exploring activities in mountain areas.展开更多
基金Supported by National Key Technology R&D Program(2006BAC01A04 2007BAC06B01)National Natural Science Foundation of China(40771121)~~
文摘With the aggravation of global change, the response and adaptation of the unique ecosystem in Qinghai-Tibet Plateau to global change have been increasingly concerned by scientific community day by day, which makes the sensitivity and fragility of this ecosystem in response to global change widely recognized by scholars. On the basis of introducing the present research process on the degenerate mechanisim, measures of and approaches to recovery, carbon cycle and primary productivity toward global change, we put forward several propositions on studying the alpine grassland ecosystem in Northern Tibetan Plateau.
基金This research was supported by National Natural Science Foundation of China (30371150 and 40371075).
文摘On the Loess Plateau, water is the main limiting factors for vegetation growth. Root distribution characters have special ecological meaning as it reflected the utilizations of trees to the environments. Even-aged stands ofRobinia pseudoacacia on slope lands facing south and north were selected as sampling plots for root distribution investigation. Investigatiing results showed that indicated that on all sites, root biomass decreased with depth, and the distribution depth of fine root was deeper than that of coarser root. The results of variance analysis indicated that there were great differences in root biomass among different diameter classes, and coarser root was the main sources of variance, and the root biomass, especially fine root (?<3mm) biomass on northern exposition sites was bigger than that on southern exposition sites. Analysis of the vertical root distribution parameters, root extinction coefficient, β indicated that the value of β on northern exposition was more than 0.982, while the value of β on southern exposition was less than 0.982, which indicated that the vertical root distribution depth ofRobinia pseudoacacia on southern exposition was deeper than that on southern exposition. And the distribution depth of fine roots (Φ<1mm) was deeper than that of thicker roots(Φ<3mm), which was in favor of the uptake of water and nutrients from deeper layers, helped the trees to adapt the arid environment, and promoted the growth of the upper parts of the tree. Keywords Root diameter classes - Variance analysis - Root extinction coefficient - Vertical distribution characters - Site conditions - Loess Plateau CLC number S792.27.01 Document code A Foundation Item: This research was supported by National Natural Science Foundation of China (30371150 and 40371075).Biography: LI Peng (1974-) male, post: Ph. D. in Northwest Scientific & Technological University of Agriculture and Forestry, Yangling 712100, Shaanxi Province, P. R. China. Tel: 029-82312651.Responsible editor: Chai Ruihal
基金Supported by Young Talents Project of Chinese Academy of Sciences (KZCX2-YW-QN302)the National Natural Science Found ofChina (41071209,30870424)~~
文摘[Objective] The study aimed to investigate the effects of temperature and nitrogen input on nitrogen mineralization in alpine soils on the Tibetan Plateau.[Method]An incubation experiment in the laboratory was conducted using three alpine soils.These soils were collected from the top 10 cm depth in three grassland types:alpine meadow in Haibei,alpine steppe in Naqu and alpine wetland in Dangxiong.[Result] Temperature significantly affected nitrogen mineralization in alpine soils of three grassland types.The mineralization rate in alpine steppe soil rose with the rise of temperature,while the mineralization rate in the alpine meadow soil and alpine wetland soil decreased with the rise of temperature.Nitrogen input had no significant effect on nitrogen mineralization in the alpine meadow soil,but significantly increased nitrogen mineralization in the alpine steppe soil and the alpine wetland soil.Grassland types significantly affected nitrogen mineralization in alpine grasslands.[Conclusion] The effects of temperature and nitrogen input on nitrogen mineralization in alpine soils on the Tibetan Plateau were significant.And those different effects depended on different types of grassland.
文摘The paper aims to study the impacts and countermeasures of climate change on animal husbandry in Qinghai plateau and its surrounding area,and evaluate the effect of countermeasures.Results showed that:First,the annual mean temperature,annual mean maximum temperature and annual mean minimum temperature showed an increasing trend in Qinghai plateau during the time from 1961 to 2008; the annual precipitation had not obvious change,but the obvious feature of seasonal change; wind speed and sunshine hours showed a decreasing trend during the time from 1961 to 2008.Secondly,under the current climate condition,grassland productivity showed a decreasing trend,and the grassland theoretical capacity affected by grassland productivity decreased too; warm winter was in favor of livestock overwintering safely,which resulted in a high level of the survival rate of young stock; temperature increasing and precipitation decreasing were beneficial to the fatness of livestock,but the meat yield of livestock was affected by some negative factors such as grassland degradation; livestock diseases had a close relationship with weather condition,and adverse weather condition may arose many diseases of livestock.Thirdly,in view of the current problems of livestock production,we took a series of countermeasures including grass industry construction,livestock improvement,developing new modes of animal husbandry,control and prevention of stockbreeding diseases and insect pests and recovery of meteorological disasters,which played a important role in promoting grassland productivity,solving the problem of the imbalances between livestock and forage,protecting the ecological environment and improving livestock performance.
文摘Based on the research of slope farmland in northern Shaanxi,the extension decision model was set up by the original theory of extenics. The optimal solution is obtained by expanding analysis,provide scientific basis for decision-making and increase the economic benefits to farmers.
基金Supported by 973 Project of National Basic Research Program ofChina(2006CB403200)Science and technology program of Guizhou Province(S2007-1021,2008-73,TZJF2008-17)National Scientific and Technological Support Project of China(2006BAD03A0303)~~
文摘[Objective] The aim was to study influences of different land use ways on soil qualities in plateau karst depression.[Method] Different land use types were divided by topographic map of 1∶10 000 scales and soil properties of physics and chemistry were analyzed.[Result] The results showed that the variation trend of soil depth(A+B stratum)was slope plough(include returning farm to forest)land>natural forest land>planted forest land>shrub forest land,and relative indexes changing regularities of soil...
基金Supported by the National Social Science Fund(06XMZ014)~~
文摘Using gradually regression analysis to establish the driving force model of utilized change of cultivated land in Gonghe County, and using path analysis, correlation analysis, partial correlation analysis and system dynamics method to inspect the effect of driving changing on cultivated land change under different change situations. Driving factors, action mechanism and process of utilized change of cultivated land were analyzed from the county territory scale level. At last, some corresponding policies and measures were put forward.
基金supported by grants of the National Natural Science Foundation of China(30270202,39870103)Chinese Academy of Sciences(kscx2-yw-z-1021)
文摘We assessed habitat preference and population status of the Sichuan Jay (Perisoreus internigrans),a poorly known Chinese endemic bird,at two sites (Zhuoni and Jiuzhaigou) in the Qinghai-Tibetan plateau between 2001 and 2004.Mean group size was 3.8 jays.Each group occupied a mean home range of 42.0 ha during the breeding season,and the mean internest distance was 2.7 km.These data indicated that the jays used less than ten percent of the available habitats and occurred at an overall density of only 0.6 jays per km2.Radio-tracked Sichuan Jays had a strong preference for mature montane coniferous forests and avoided areas dominated by shrubs,while the utilization of young conifers,grassland,and human residential habitat types did not differ significantly from the values expected from the home-range availabilities of these habitats generally.
基金Supported by National Key Basic Research Development Plan(973) Early Special Item(2008CB41720)Yunnan Application Basic Research Apparent Project (2009ZC083M)+1 种基金Yunnan Technological Plan Project (2008CA006)Apparent Fund Project of South West Forestry University (200804M)~~
文摘As the main external pollution source of lake,nitrogen and phosphorus from agricultural non-point source make a great contribution to the lake eutrophication pollution.Wetland lakefront zone which plays a key role in externally agricultural non-point source pollution is considered as the biggest barrier for controlling external pollution.In this research,the Jian lake plateau Zizania latifolia wetland lakefront zone was selected for agricultural non-point source pollutions control with the systematic field research,and the lakefront zone was approved to have an effective purification effect on nitrogen and phosphorus from Jinlong River; the theoretical mechanism of lakefront zone removing nutrient was also investigated.Z.latifolia wetland lakefront zone could remove nitrogen and phosphorus from Jinlong River and the removal ratio can reach 55.8-62.52% and 59.47-69.81% respectively.So,we can indicate that the Jian Lake plateau Z.latifolia wetland lakefront zone had a good effect on controlling agricultural non-point source pollution and protecting the environment.
基金supported by the National Natural Science Foundation of China (40671181, 30870396)the Chinese Academy of Sciences (KZCX2-YW-418, KZCX2-XB2-02)+1 种基金the Ministry of Science & Technology of China (2006BAC01A15, 2006BAC01A11)the Science & Technology Bureau of Sichuan, China (03ZQ026-043)
文摘Although snow cover plays an important role in structuring plant diversity in the alpine zone, there are few studies on the relationship between snow cover and species diversity of alpine meadows on the eastern Qinghai-Tibetan Plateau. To assess the effect of snow cover on plant species diversity of alpine meadows, we used ten parallel transects of 60 m × 1 m for this study and described the changes in species diversity and composition associated with snow depth. With the division of snow depth into six classes, the highest species richness (S) and species diversity (H′) occurred with an intermediate snow depth, i.e., class Ⅲ and class Ⅳ, showing a unimodal curve with the increase in snow depth. The relationship between snow depth and plant diversity (both richness and Shannon index) could be depicted by quadratic equations. There was no evident relationship between diversity (both S and H′) and soil water content, which implied that other more important factors influenced species diversity. The patterns of diversity found in our study were largely attributed to freeze-thaw alteration, length of growing season and disturbances of livestock grazing. Furthermore, snow depth affected species composition, as evaluated by the Sorensen's index of similarity. In addition, almost all species limited to one snow depth class were found only in class Ⅲand class Ⅳ, indicating that intermediate snow depth was suitable for the survival and growth of many alpine species.
基金Project supported by the National Basic Research Program (973 Program) of China (No. 2007CB106804)the International S&T Cooperation Program (ISTCP) of China (No. 2006DFA31070)the International Foundation for Sciences(No. C/3313-2)
文摘Cropland (CP),native grassland (NG) and two shrub land treatments which were converted from cropland in 1985:seabuckthorn (Hippophae rhamnoides L.) (ST),and branchytamarisk (Tamarix ramosissima) (BT) were investigated to evaluate effects of land use conversion on soil organic carbon (SOC) and soil nutrients in the semi-arid region of the Loess Plateau of China.Total organic carbon (TOC),light fraction organic carbon (LFOC),heavy fraction organic carbon (HFOC),total N (TN),nitrate nitrogen (NO 3-N) and nitrite nitrogen (NO 2-N),ammonium nitrogen (NH + 4-N),total P,and available P (AP) were measured.The results showed that SOC in NG,ST and BT were 12.7%,27.7% and 34.8% higher than that of the cropland,respectively.LFOC,light fraction (LF) dry matter,ratio of TOC to TN (C/N) and the ratio of TOC to AP (C/P) were higher in the shrub land or native grassland than in the cropland.Cropland had the highest TN,the sum of NO 3-N and NO 2-N,TP and AP due to the use of chemical fertilizers.TOC significantly correlated with LFOC,HFOC and C/N.LFOC significantly correlated with dry matter of the LF and C/N.TN,the sum of NO 3-N and NO 2-N and AP were significantly negatively correlated with TOC and LFOC.Therefore,land use conversion from cropland to shrub land,or maybe grassland,contributed to SOC sequestration and improved soil nutrients stabilization.
基金supported by Program of International S&T Cooperation,the Ministry of Science and Technology of the People's Republic of China(Grant No.2011DFA20820)International Science&Technology Cooperation Program of China,MOST(Grant No.2011DFG93160)+1 种基金the Qinghai Science and Technology Department(Grant No.2009-J-806)Department of International Exchange&Cooperation of the Ministry of Education(Grant Nos.2009-1599,2010-1595)
文摘In this paper a geomorphic-centered system was proposed for classifying the wetlands on the Qinghai-Tibet Plateau in western China, where the flora comprises primarily grasses. Although the geomorphic properties (e.g., elevation and morphology) of wetlands form the primary criteria of classification, this system also takes hydrological processes into implicit consideration. It represents an improvement over the hydrogeomorphic perspective as the relative importance of the two components (wetness and landform) of wetlands is clearly differentiated. This geomorphic-centered perspective yields insights into the hydrogeomorphic dynamics of plateau wetlands while indicates their vulnerability to change and degradation indirectly. According to this geomorphic-centered perspective, all plateau wetlands fall into one of the seven types of alpine, piedmont, valley, terrace, floodplain, lacustrine, and riverine in three elevational categories of upland, midland, and lowland. Upland (alpine and piedmont) wetlands with the steepest topography are the most sensitive to change whereas midland (floodplain, terrace and valley) wetlands are less vulnerable to degradation owing to a high water reserve except terrace wetlands. They have a dry surface caused by infrequent hydrological replenishment owing to their higher elevation than the channel. Low lying (lacustrine and riverine) wetlands are the most resilient. The geomorphic-centered perspective developed in this paper provides a framework for improving recognition and management of wetlands on the Plateau. Resilient wetlands can be grazed more intensively without the risk of degradation. Fragile and vulnerable wetlands require careful managementto avoid degradation.
基金financially supported by the National Natural Science Foundation of China (Grant No.40640420072 and No.40771006)
文摘The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961-2003 across the Qinghai-Tibet Plateau. The results show that temperature variations not only depend on altitude but also latitude, and there is a gradual decrease in temperature with the increasing altitude and latitude. The overall trend for the vertical temperature lapse rate for the whole plateau is approximately linear. Three methods, namely multivariate composite analysis, simple correlation and traditional stepwise regression, were applied to analyze these three correlations. The results assessed with the first method are well matched to those with the latter two methods. The apparent mean annual near-surface lapse rate is -4.8 ℃ /km and the latitudinal effect is -0.87 ℃ /°latitude. In summer, the altitude influences the temperature variations more significantly with a July lapse rate of -4.3℃/km and the effect of latitude is only -0.28℃ /°latitude. In winter, the reverse happens. The temperature decrease is mainly due to the increase in latitude. The mean January lapse rate is -5.0℃/km, while the effect of latitude is -1.51℃ /°latitude. Comparative analysis for pairs of adjacent stations shows that at a small spatial scale the difference in altitude is the dominant factor affecting differences in mean annual near-surface air temperature, aided to some extent bydifferences of latitude. In contrast, the lapse rate in a small area is greater than the overall mean value for the Qinghai-Tibet Plateau (5 to 13℃ /km). An increasing trend has been detected for the surface lapse rate with increases in altitude. The temperature difference has obvious seasonal variations, and the trends for the southern group of stations (south of 33 o latitude) and for the more northerly group are opposite, mainly because of the differences in seasonal variation at low altitudes. For yearly changes, the temperature for high-altitude stations occurs earlier clearly. Temperature datasets at high altitude stations are well-correlated, and those in Nanjing were lagged for 1 year but less for contemporaneous correlations. The slope of linear trendline of temperature change for available years is clearly related to altitude, and the amplitude of temperature variation is enlarged by high altitude. The change effect in near-surface lapse rate at the varying altitude is approximately 1.0℃ /km on the rate of warming over a hundred-year period.
基金supported by the“Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues’’of the Chinese Academy of Sciences(Grant No.XDA05060104)
文摘Changes in vegetation phenology are key indicators of the response of ecosystems to climate change.Therefore,knowledge of growing seasons is essential to predict ecosystem changes,especially for regions with a fragile ecosystem such as the Loess Plateau.In this study,based on the normalized difference vegetation index(NDVI) data,we estimated and analyzed the vegetation phenology in the Loess Plateau from 2000 to 2010 for the beginning,length,and end of the growing season,measuring changes in trends and their relationship to climatic factors.The results show that for 54.84% of the vegetation,the trend was an advancement of the beginning of the growing season(BGS),while for 67.64% the trend was a delay in the end of the growing season(EGS).The length of the growing season(LGS) was extended for 66.28% of the vegetation in the plateau.While the temperature is important for the vegetation to begin the growing season in this region,warmer climate may lead to drought and can become a limiting factor for vegetation growth.We found that increasedprecipitation benefits the advancement of the BGS in this area.Areas with a delayed EGS indicated that the appropriate temperature and rainfall in autumn or winter enhanced photosynthesis and extended the growth process.A positive correlation with precipitation was found for 76.53% of the areas with an extended LGS,indicating that precipitation is one of the key factors in changes in the vegetation phenology in this water-limited region.Precipitation plays an important role in determining the phenological activities of the vegetation in arid and semiarid areas,such as the Loess Plateau.The extended growing season will significantly influence both the vegetation productivity and the carbon fixation capacity in this region.
基金Under the auspices of National Natural Science Foundation of China (No.50879033,41001116)Specialized Research Fund for the Doctoral Program of Higher Education (No.20090211110025)Fundamental Research Funds for the Central Universities (No.lzujbky-2010-221)
文摘The Badain Jaran Desert,located in the Alxa Plateau,Northwest China,features mega-dunes and a unique dune-lake alternation landscape.This paper presented the aeolian sediment structures of three representative dunes in the Badain Jaran Desert using ground-penetrating radar (GPR).We processed and analyzed the GPR data and investigated the feasibility of using integrated GPR and sedimentological data to reconstruct dunes structure,sedimentary environment and geomorphological evolution.The results show that the internal structures of star dune and transverse dune represent various stages of mega-dune evolution: the main deposition processes of mega-dune are similar to those of transverse dunes but have a more complicated mechanism of sand transport and deposition because of the superimposition of dunes;the upper section of the mega-dune has a structure similar to that of star dune,with vertical aggradations on top.Diffraction hyperbolae in the GPR profile indicates that the presence of ancient dunes characterized by calcareous cementation layers is involved in the maintenance of mega-dunes,and water levels,shown by continuous,sub-horizontal GPR reflections,are supposed to be closely related to mega-dunes and the interdune lakes.Outcrop of wet sand and horizontal stratifications on the GPR image indicate moisture potentials with different levels inside mega-dunes.The multiplex geomorphology in the Badain Jaran Desert is the result of global climatic undulation,the unique geographical location,the geological structural features,etc.
基金Key Laboratory on Natural Disasters for Jiangsu Province (KLME050210)
文摘Comparisons of the west Pacific subtropical high with the South Asia High are made using the NCEP/NCAR and ECMWF 500 hPa and 100 hPa monthly boreal geopotential height fields for the period 1961-2000. Discrepancies are found for the time prior to 1980. The west Pacific subtropical high in the NCEP/NCAR data is less intense than in ECMWF data before 1980. The range and strength of the west Pacific subtropical high variation described by the NCEP/NCAR data are larger than those depicted by ECMWF data. The same situation appears in the 100-hPa geopotential field. These discoveries suggest that the interdecadal variation of the two systems as shown by the NCEP/NCAR data may not be true. Besides, the South Asia High center in the NCEP/NCAR data is obviously stronger than in the ECMWF data during the periods 1969, 1979-1991 and 1992-1995. Furthermore, the range is larger from 1992 to 1995.
基金This research is supported by the West Key Research Project of the National Natural Science Foundation of China(No.90202007)the Researcher Introduced Project of Chengdu Institute of Mountain Hazards and Environment,the Chinese Academy of Sciences&Ministry of Water Conservancy(Y1006).
文摘Tibet is located at the southwest boundary of China. It is the main body of the Qinghai-Tibet Plateau, the highest and the youngest plateau in the world. Owing to complicated geology, Neo-tectonic movements, geomorphology, climate and plateau environment, various mountain hazards, such as debris flow, flash flood, landslide, collapse, snow avalanche and snow drifts, are widely distributed along the Jinsha River (the upper reaches of the Yangtze River), the Nu River and the Lancang River in the east, and the Yarlungzangbo River, the Pumqu River and the Poiqu River in the south and southeast of Tibet. The distribution area of mountain hazards in Tibet is about 589,000 km2, 49.3% of its total territory. In comparison to other mountain regions in China, mountain hazards in Tibet break out unexpectedly with tremendously large scale and endanger the traffic lines, cities and towns, farmland, grassland, mountain environment, and make more dangers to the neighboring countries, such as Nepal, India, Myanmar and Bhutan. To mitigate mountain hazards, some suggestions are proposed in this paper, such as strengthening scientific research, enhancing joint studies, hazards mitigation planning, hazards warning and forecasting, controlling the most disastrous hazards and forbidding unreasonable human exploring activities in mountain areas.