Iron isotopic composition of the upper continental crust(UCC) is critical for understanding Fe mobilization and migration through the Earth. Because rocks exposed at Earth's surface have heterogeneous δ^(56)Fe, f...Iron isotopic composition of the upper continental crust(UCC) is critical for understanding Fe mobilization and migration through the Earth. Because rocks exposed at Earth's surface have heterogeneous δ^(56)Fe, finegrained clastic sediments can be used to estimate the average composition of UCC. In this study, we report δ^(56)Fe of loess-paleosol sequences from Yimaguan, Chinese Loess Plateau(CLP), to constrain the average Fe isotopic composition of UCC. The loess-paleosol sequences in this area formed in glacial-interglacial cycles and are characterized by varying degrees of weathering. Our data show that the loess-paleosol layers have extremely homogeneous Fe isotopic compositions with δ^(56)Fe ranging from 0.06‰ to 0.12‰, regardless of variations in the major element composition and weathering intensity. Our study indicates that since Fe isotopes are not significantly fractionated during loess deposition, the loess can be regarded as representative of UCC. It follows that the average δ^(56)Fe of UCC is 0.09‰± 0.03‰(2SD), consistent with previous estimates based on igneous rock data.展开更多
Calculation of repeated observation data at the densified GPS monitoring network in northeastern area of Pamir together with data from IGS stations in the periphery of the area yielded the movement rate of more than 4...Calculation of repeated observation data at the densified GPS monitoring network in northeastern area of Pamir together with data from IGS stations in the periphery of the area yielded the movement rate of more than 40 GPS station sites in the area, and, hence, the recent crustal deformation rate pattern and time series of fiducial GPS stations in the area were obtained. The result indicates that the principal movement direction of the GPS station sites is NNW, basically diagonal to the strike of Tianshan fold belt, i.e. a normal compression occurs in the Tianshan region. The movement pattern near Jiashi and its southwestern zone is some different from that of station sites in their surrounding areas, indicating a certain relation of tectonic deformation in Jiashi area to seismic activity during last years. The movement rate of station sites in the periphery of Tarim basin less varies and its direction is basically consistent. It indicates less or basically no deformation within Tarim basin.展开更多
Based on analysis and simulation,the interaction of thermal forcing between the Tibetan Plateau(TP) and Iranian Plateau(IP) in summer is investigated.Associated influences on water vapor transport in the Asian subtrop...Based on analysis and simulation,the interaction of thermal forcing between the Tibetan Plateau(TP) and Iranian Plateau(IP) in summer is investigated.Associated influences on water vapor transport in the Asian subtropical monsoon region and the formation of a cold center in the lower stratosphere over Eurasia are also investigated.Results show that surface sensible heating(SH) over the two plateaus not only have mutual influences but also feedback to each other.SH over the IP can reduce the SH and increase the LH over the TP,whereas the SH over the TP can increase surface heating over the IP,thereby reaching quasi-equilibrium among the SH and LH over the TP,IP SH and atmosphere vertical motion.Therefore,the so-called Tibetan-Iranian Plateau coupling system(TIPS) is constructed,which influences atmosphere circulation.In the TIPS system,interaction between surface SH and LH over the TP plays a leading role.SH of the IP and TP influences on other regions not only have superimposed effects but also mutually offset.Accounting for contributions to the convergence of water vapor transport in the Asian subtropical monsoon region,TP SH contributes more than twice that of the IP.The combined influence of SH over TP and IP represents the major contribution to the convergence of water vapor transport in that region.In addition,the heating effect of TIPS increases the upper tropospheric temperature maximum and lifts the tropopause,cooling the lower stratosphere.Combined with large-scale thermal forcing of the Eurasian continent,the TIPS produces a strong anticyclonic circulation and the South Asian High that warms the upper troposphere and cools the lower stratosphere,thereby affecting regional and global weather and climate.展开更多
The hydrogen isotopic composition(δD) of leaf wax long-chain n-alkanes(C27, C29, and C31) from lacustrine sediments has been widely applied to reconstruct terrestrial paleoclimatic and paleohydrological changes. Howe...The hydrogen isotopic composition(δD) of leaf wax long-chain n-alkanes(C27, C29, and C31) from lacustrine sediments has been widely applied to reconstruct terrestrial paleoclimatic and paleohydrological changes. However, few studies have addressed whether the aquatic-derived n-alkanes can affect the δD values of lake sedimentary long-chain n-alkanes, which are usually regarded as a recorder of the terrestrial hydrological signals. Here we systematically investigated δD values of long-chain n-alkanes from modern aquatic plants, both near-shore and off-shore surface sediments, surrounding terrestrial plant litters, as well as river water and lake water in Lake Qinghai and its satellite lakes on the northeastern Qinghai-Tibet Plateau. Our data showed that(i) δD values of long-chain n-alkanes from aquatic plants varied from-184‰ to-132‰ for n-C27, from-183‰ to-138‰ for n-C29, and from-189‰ to-130‰ for n-C31, respectively, with no significant differences among the three n-alkanes homologues;(ii) δD values of long-chain n-alkanes from aquatic plants were generally more positive than those from surrounding terrestrial plants, possibly because that they recorded the D-enrichment of lake water in this semi-arid region;(iii) δD values of long-chain n-alkanes from surface sediments showed significant differences among the three n-alkanes homologues, due to the larger aquatic input of n-C27 to the sedimentary lipid pool than that of n-C31, and(iv) n-C27 δD values of near-shore aquatic plants and near-shore sediments are more negative than those from off-shore as a result of lower δD values of near-shore lake water. Our findings indicate that in this region(i) the offset between sedimentary n-C27 and n-C31 δD values(ΔδDC27-C31) could potentially be used to evaluate if sedimentary long-chain n-alkanes are derived from a single source;(ii) while δD values of n-C27 may be influenced by lake water hydrological changes, sedimentary n-C31 is derived predominantly from terrestrial plants and thus its δD can serve as a relatively reliable indicator for terrestrial paleoclimatic and paleohydrological reconstructions.展开更多
基金financially supported by the National Science Foundation of China(41173031,41325011 and 41503001)the Fundamental Research Funds for the Central Universities(WK3410000004)
文摘Iron isotopic composition of the upper continental crust(UCC) is critical for understanding Fe mobilization and migration through the Earth. Because rocks exposed at Earth's surface have heterogeneous δ^(56)Fe, finegrained clastic sediments can be used to estimate the average composition of UCC. In this study, we report δ^(56)Fe of loess-paleosol sequences from Yimaguan, Chinese Loess Plateau(CLP), to constrain the average Fe isotopic composition of UCC. The loess-paleosol sequences in this area formed in glacial-interglacial cycles and are characterized by varying degrees of weathering. Our data show that the loess-paleosol layers have extremely homogeneous Fe isotopic compositions with δ^(56)Fe ranging from 0.06‰ to 0.12‰, regardless of variations in the major element composition and weathering intensity. Our study indicates that since Fe isotopes are not significantly fractionated during loess deposition, the loess can be regarded as representative of UCC. It follows that the average δ^(56)Fe of UCC is 0.09‰± 0.03‰(2SD), consistent with previous estimates based on igneous rock data.
基金the state 973 project (G1998040703) and key research project of the State Science & Technology Ministry (96-913-07-03),China.
文摘Calculation of repeated observation data at the densified GPS monitoring network in northeastern area of Pamir together with data from IGS stations in the periphery of the area yielded the movement rate of more than 40 GPS station sites in the area, and, hence, the recent crustal deformation rate pattern and time series of fiducial GPS stations in the area were obtained. The result indicates that the principal movement direction of the GPS station sites is NNW, basically diagonal to the strike of Tianshan fold belt, i.e. a normal compression occurs in the Tianshan region. The movement pattern near Jiashi and its southwestern zone is some different from that of station sites in their surrounding areas, indicating a certain relation of tectonic deformation in Jiashi area to seismic activity during last years. The movement rate of station sites in the periphery of Tarim basin less varies and its direction is basically consistent. It indicates less or basically no deformation within Tarim basin.
基金supported by the National Natural Science Foundation of China(Grant Nos.91437219&91637312)the Special Fund for Public Welfare Industry(Meteorology)administered by the Chinese Ministry of Finance and the Ministry of Science and Technology(Grant No.GYHY201406001)+2 种基金the China Postdoctoral Science Foundation(Grant No.2016M600695)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDY-SSWDQC018)the Special Program for Applied Research on Super Computation of the National Natural Science Foundation of China-Guangdong Joint Fund(The Second Phase)
文摘Based on analysis and simulation,the interaction of thermal forcing between the Tibetan Plateau(TP) and Iranian Plateau(IP) in summer is investigated.Associated influences on water vapor transport in the Asian subtropical monsoon region and the formation of a cold center in the lower stratosphere over Eurasia are also investigated.Results show that surface sensible heating(SH) over the two plateaus not only have mutual influences but also feedback to each other.SH over the IP can reduce the SH and increase the LH over the TP,whereas the SH over the TP can increase surface heating over the IP,thereby reaching quasi-equilibrium among the SH and LH over the TP,IP SH and atmosphere vertical motion.Therefore,the so-called Tibetan-Iranian Plateau coupling system(TIPS) is constructed,which influences atmosphere circulation.In the TIPS system,interaction between surface SH and LH over the TP plays a leading role.SH of the IP and TP influences on other regions not only have superimposed effects but also mutually offset.Accounting for contributions to the convergence of water vapor transport in the Asian subtropical monsoon region,TP SH contributes more than twice that of the IP.The combined influence of SH over TP and IP represents the major contribution to the convergence of water vapor transport in that region.In addition,the heating effect of TIPS increases the upper tropospheric temperature maximum and lifts the tropopause,cooling the lower stratosphere.Combined with large-scale thermal forcing of the Eurasian continent,the TIPS produces a strong anticyclonic circulation and the South Asian High that warms the upper troposphere and cools the lower stratosphere,thereby affecting regional and global weather and climate.
基金supported by the National Natural Science Foundation of China (Grant No. 41573005)the National Basic Research Program of China (Grant No. 2013CB955901)
文摘The hydrogen isotopic composition(δD) of leaf wax long-chain n-alkanes(C27, C29, and C31) from lacustrine sediments has been widely applied to reconstruct terrestrial paleoclimatic and paleohydrological changes. However, few studies have addressed whether the aquatic-derived n-alkanes can affect the δD values of lake sedimentary long-chain n-alkanes, which are usually regarded as a recorder of the terrestrial hydrological signals. Here we systematically investigated δD values of long-chain n-alkanes from modern aquatic plants, both near-shore and off-shore surface sediments, surrounding terrestrial plant litters, as well as river water and lake water in Lake Qinghai and its satellite lakes on the northeastern Qinghai-Tibet Plateau. Our data showed that(i) δD values of long-chain n-alkanes from aquatic plants varied from-184‰ to-132‰ for n-C27, from-183‰ to-138‰ for n-C29, and from-189‰ to-130‰ for n-C31, respectively, with no significant differences among the three n-alkanes homologues;(ii) δD values of long-chain n-alkanes from aquatic plants were generally more positive than those from surrounding terrestrial plants, possibly because that they recorded the D-enrichment of lake water in this semi-arid region;(iii) δD values of long-chain n-alkanes from surface sediments showed significant differences among the three n-alkanes homologues, due to the larger aquatic input of n-C27 to the sedimentary lipid pool than that of n-C31, and(iv) n-C27 δD values of near-shore aquatic plants and near-shore sediments are more negative than those from off-shore as a result of lower δD values of near-shore lake water. Our findings indicate that in this region(i) the offset between sedimentary n-C27 and n-C31 δD values(ΔδDC27-C31) could potentially be used to evaluate if sedimentary long-chain n-alkanes are derived from a single source;(ii) while δD values of n-C27 may be influenced by lake water hydrological changes, sedimentary n-C31 is derived predominantly from terrestrial plants and thus its δD can serve as a relatively reliable indicator for terrestrial paleoclimatic and paleohydrological reconstructions.