[Objective] The study aimed to investigate the effects of temperature and nitrogen input on nitrogen mineralization in alpine soils on the Tibetan Plateau.[Method]An incubation experiment in the laboratory was conduct...[Objective] The study aimed to investigate the effects of temperature and nitrogen input on nitrogen mineralization in alpine soils on the Tibetan Plateau.[Method]An incubation experiment in the laboratory was conducted using three alpine soils.These soils were collected from the top 10 cm depth in three grassland types:alpine meadow in Haibei,alpine steppe in Naqu and alpine wetland in Dangxiong.[Result] Temperature significantly affected nitrogen mineralization in alpine soils of three grassland types.The mineralization rate in alpine steppe soil rose with the rise of temperature,while the mineralization rate in the alpine meadow soil and alpine wetland soil decreased with the rise of temperature.Nitrogen input had no significant effect on nitrogen mineralization in the alpine meadow soil,but significantly increased nitrogen mineralization in the alpine steppe soil and the alpine wetland soil.Grassland types significantly affected nitrogen mineralization in alpine grasslands.[Conclusion] The effects of temperature and nitrogen input on nitrogen mineralization in alpine soils on the Tibetan Plateau were significant.And those different effects depended on different types of grassland.展开更多
The temporal dynamics of the biomass, as well as the carbon (C), nitrogen (N), phosphorus (P) concentrations and accumulation contents, in above- and below-ground vegetation components were determined in the alp...The temporal dynamics of the biomass, as well as the carbon (C), nitrogen (N), phosphorus (P) concentrations and accumulation contents, in above- and below-ground vegetation components were determined in the alpine steppe vegetation of Northern Tibet during the growing season of 2OLO. The highest levels of total biomass (311.68 g m-2), total C (115.95 g m-2), total N (2.60 g m-2), and total P (0.90 g m-2) accumulation contents were obtained in August in 2010. Further, biomass and nutrient stocks in the below-ground components were higher than those of the above-ground components. The dominant species viz., Stipa purpurea and Carex moorcrofli had lower biomass and C, N, P accumulations than the companion species which including Oxytropis. spp., Artemisia capillaris Thunb., Aster tataricus L., and SO on.展开更多
In this article, we mainly analysis the soil carbon storage of the alpine grassland under different land uses in Qinghai-Tibet Plateau. The samples of this investigation include six experimental fields which are fence...In this article, we mainly analysis the soil carbon storage of the alpine grassland under different land uses in Qinghai-Tibet Plateau. The samples of this investigation include six experimental fields which are fenced mowing grassland, artificial grassland, winter and spring grazing meadowland, summer and autumn mild grazing land, summer and autumn moderate grazing pasture and summer and autumn severe grazing land and seven soil layers included 0 cm-5 cm, 5 cm-10 cm, 10 cm-20 cm, 20 cm-30 cm, 30 cm-50 cm, 50 cm-70 cm and 70 cm-100 cm. The results show that the soil carbon storage in different soil layers will gradually reduce and the difference was remarkable (P 〈 0.05). What is more, the soil carbon storage of alpine grassland under different land uses has following sequence: winter and spring grazing grassland 〉 summer and autumn mild grazing land 〉 artificial grassland 〉 summer and autumn moderate grazing meadowland 〉 summer and autumn severe grazing pasture 〉 fenced mowing meadow, and the significant difference between them is remarkable (P 〈 0.05).展开更多
Variations in the fractions of biomass allocated to functional components are widely considered as plant responses to resource availability for grassland plants. Observations indicated shoots isometrically relates to ...Variations in the fractions of biomass allocated to functional components are widely considered as plant responses to resource availability for grassland plants. Observations indicated shoots isometrically relates to roots at the community level but allometrically at the species level in Tibetan alpine grasslands. These differences may result from the specific complementarity of functional groups between functional components, such as leaf, root, stem and reproductive organ. To test the component complementary responses to regional moisture variation, we conducted a multi-site transect survey to measure plant individual size and component biomass fractions of common species belonging to the functional groups: forbs, grasses, legumes and sedges on the Northern Tibetan Plateau in peak growing season in 2010. Along the mean annual precipitation (MAP) gradient, we sampled 7o species, in which 2o are in alpine meadows, 20 in alpine steppes, 15 in alpine desert-steppes and 15 in alpine deserts, respectively. Our results showed that the size of alpine plants is small with individual biomass mostly lower than 1.0 g. Plants keep relative conservative component individual responses moisture functional fractions across alpine grasslands at the level. However, the complementary between functional components to variations specifically differ among groups. These results indicate that functional group diversity may be an effective tool for scaling biomass allocation patterns from individual up to community level. Therefore, it is necessary andvaluable to perform intensive and systematic studies on identification and differentiation the influences of compositional changes in functional groups on ecosystem primary services and processes.展开更多
Global climate change has been found to substantially influence the phenology of rangeland,especially on the Tibetan Plateau. However, there is considerable controversy about the trends and causes of rangeland phenolo...Global climate change has been found to substantially influence the phenology of rangeland,especially on the Tibetan Plateau. However, there is considerable controversy about the trends and causes of rangeland phenology owing to different phenological exploration methods and lack of ground validation. Little is known about the uncertainty in the exploration accuracy of vegetation phenology.Therefore, in this study, we selected a typical alpine rangeland near Damxung national meteorological station as a case study on central Tibetan Plateau, and identified several important sources influencing phenology to better understand their effects on phenological exploration. We found man-made land use was not easily distinguished from natural rangelands, and therefore this may confound phenological response to climate change in the rangeland. Change trends of phenology explored by four methods were similar, but ratio threshold method(RTM) was more suitable for exploring vegetation phenology in terms of the beginning of growing season(BGS) and end of growing season(EGS). However, some adjustments are needed when RTM is used in extreme drought years. MODIS NDVI/EVI dataset was most suitable for exploring vegetation phenology of BGS and EGS. The discrimination capacities of vegetation phenology declined with decreasing resolution of remote sensing images from MODIS to GIMMS AVHRR datasets. Additionally, distinct trends of phenological change rates were indicated in different terrain conditions, with advance of growing season in high altitudes but delay of season in lower altitudes. Therefore, it was necessary to eliminate interference of complex terrain and man-made land use to ensure the representativeness of natural vegetation. Moreover, selecting the appropriate method to explore rangelands and fully considering the impact of topography are important to accurately analyze the effects of climate change on vegetation phenology.展开更多
Although biotic and abiotic factors have been confirmed to be critical factors that affect community dynamics,their interactive effects have yet to be fully considered in grassland degradation.Herein,we tested how soi...Although biotic and abiotic factors have been confirmed to be critical factors that affect community dynamics,their interactive effects have yet to be fully considered in grassland degradation.Herein,we tested how soil nutrients and microbes regulated plant-soil feedback(PSF)in a degraded alpine grassland.Our results indicated that soil total carbon(STC;from 17.66 to 12.55 g/kg)and total nitrogen(STN;from 3.16 to 2.74 g/kg)exhibited significant(P<0.05)decrease from non-degraded(ND)to severely degraded(SD).Despite higher nutrients in ND soil generating significantly(P<0.05)positive PSF(0.52)on monocots growth when the soil was sterilized,a high proportion of pathogens(36%)in ND non-sterilized soil resulted in a strong negative PSF on monocots.In contrast,the higher phenotypic plasticity of dicots coupled with a higher abundance of mutualists and saprophytes(70%)strongly promoted their survival and growth in SD with infertile soil.Our findings identified a novel mechanism that there was a functional group shift from monocots with higher vulnerability to soil pathogens in the ND fertile soil to dicots with higher dependence on nutritional mutualists in the degraded infertile soil.The emerging irreversible eco-evolutionary in PSF after degradation might cause a predicament for the restoration of degraded grassland.展开更多
Species richness and diversity indices (Shannon-Wiener index, Simpson dominance index and Pielou evenness index) in alpine grassland ecosystems (alpine meadow, alpine steppe and desert steppe) under grazing-exclud...Species richness and diversity indices (Shannon-Wiener index, Simpson dominance index and Pielou evenness index) in alpine grassland ecosystems (alpine meadow, alpine steppe and desert steppe) under grazing-excluded and freely grazed sites were investigated along the Northern Tibetan Plateau Alpine Grassland Transect during summer 2009 and 2010. We found that species richness and diversity have not been significantly altered by short-term grazing exclusion since 2006 at vegetation and regional scales. Species richness and diversity were mainly driven by growing season precipitation (GSP), which accounted for over 87 % of the total variation observed, Species richness and diversity at grazing- excluded and freely grazed sites appear to respond to growing season precipitation in parallel. Species richness exponentially increased with GSP while diversity indices showed positively linear relationships with GSP. This indicates that GSP on the Northern Tibetan Plateau is crucial in regulating species richness and diversity and should be taken into account in future studies on alpine grassland conservation.展开更多
Soil acidity is an important parameter that can regulate ecosystem structure and function.However,a quantitative understanding of the relationships between soil pH and environmental factors remains unavailable.In this...Soil acidity is an important parameter that can regulate ecosystem structure and function.However,a quantitative understanding of the relationships between soil pH and environmental factors remains unavailable.In this study,relationships of soil pH with both climatic and edaphic factors in alpine grasslands on the Tibetan Plateau,China were quantified using data obtained from a regional soil survey during 2001-2004.Our results showed that soil pH decreased along the gradient of both mean annual temperature and precipitation.Likewise,soil pH exhibited consistent negative correlations with soil moisture and silt content.However,soil organic and inorganic carbon contents played opposite roles in shaping patterns of soil pH:the accumulation of soil organic matter led to higher soil acidity,while the existence of soil inorganic matter was favorable for maintaining higher soil alkalinity.The variation partitioning analysis indicated that the combination of climatic and edaphic variables explained 74.3%of the variation in soil acidity.These results suggest that soil pH could be predicted from routinely-measured variables,allowing a robust pedotransfer function to be developed.The pedotransfer function may facilitate land surface models to generate more reliable predictions on ecosystem structure and function around the world.展开更多
As an important biomarker, fatty acids(FAs) have been extensively used to trace the origin of organic matter in sediments and soils. However, studies of the distribution and abundance of FAs in alpine grassland soils ...As an important biomarker, fatty acids(FAs) have been extensively used to trace the origin of organic matter in sediments and soils. However, studies of the distribution and abundance of FAs in alpine grassland soils are still rare, especially on the Qinghai-Tibetan Plateau(QTP), the highest plateau in the world, which contributes sediments to many large rivers in Asia. This study investigates the composition, distribution and source of FAs with increasing soil depths from 17 typical alpine grassland sites in the QTP. The most abundant FAs included the ubiquitous C16 FA and even-numbered long-chain FAs(C20–C30), indicating mixed inputs from microbial and higher plant sources. Source apportionment showed that higher plants were the dominant contributor of FAs(approximately 40%) in QTP soils. The abundance of FAs decreased with soil depth, with the highest value(1.08±0.09 mg/g C) at a 0–10 cm depth and the lowest value(0.46±0.12 mg/g C) at a 50–70 cm depth, due to much lower plant inputs into the deeper horizons. The total concentration of FAs was negatively correlated to the mean annual temperature(MAT; P<0.05) and soil p H(P<0.01), suggesting that the preservation of FAs was favored in low-MAT and low-p H soils on the QTP. The abundance of fresh C source FAs increased significantly with the mean annual precipitation(MAP; P<0.05), indicating that high MAP facilitates the accumulation of fresh FAs in QTP soils. Other environmental parameters, such as the soil mineral content(aluminum and iron oxide), microbial community composition as well as litter quality and quantity, may also exert a strong control on the preservation of FAs in QTP soils and warrant further research to better understand the mechanisms responsible for the preservation of FAs in QTP soils.展开更多
基金Supported by Young Talents Project of Chinese Academy of Sciences (KZCX2-YW-QN302)the National Natural Science Found ofChina (41071209,30870424)~~
文摘[Objective] The study aimed to investigate the effects of temperature and nitrogen input on nitrogen mineralization in alpine soils on the Tibetan Plateau.[Method]An incubation experiment in the laboratory was conducted using three alpine soils.These soils were collected from the top 10 cm depth in three grassland types:alpine meadow in Haibei,alpine steppe in Naqu and alpine wetland in Dangxiong.[Result] Temperature significantly affected nitrogen mineralization in alpine soils of three grassland types.The mineralization rate in alpine steppe soil rose with the rise of temperature,while the mineralization rate in the alpine meadow soil and alpine wetland soil decreased with the rise of temperature.Nitrogen input had no significant effect on nitrogen mineralization in the alpine meadow soil,but significantly increased nitrogen mineralization in the alpine steppe soil and the alpine wetland soil.Grassland types significantly affected nitrogen mineralization in alpine grasslands.[Conclusion] The effects of temperature and nitrogen input on nitrogen mineralization in alpine soils on the Tibetan Plateau were significant.And those different effects depended on different types of grassland.
基金funded by One Hundred Young Persons Project of Institute of Mountain Hazards and Environment (No.SDSQB-2010-02)the National Natural Science Foundation of China (No.41001177)Knowledge Innovation Program of the Chinese Academy of Sciences (Nos.KZCX2-YW-QN31,KZCX2-XB3-08)
文摘The temporal dynamics of the biomass, as well as the carbon (C), nitrogen (N), phosphorus (P) concentrations and accumulation contents, in above- and below-ground vegetation components were determined in the alpine steppe vegetation of Northern Tibet during the growing season of 2OLO. The highest levels of total biomass (311.68 g m-2), total C (115.95 g m-2), total N (2.60 g m-2), and total P (0.90 g m-2) accumulation contents were obtained in August in 2010. Further, biomass and nutrient stocks in the below-ground components were higher than those of the above-ground components. The dominant species viz., Stipa purpurea and Carex moorcrofli had lower biomass and C, N, P accumulations than the companion species which including Oxytropis. spp., Artemisia capillaris Thunb., Aster tataricus L., and SO on.
文摘In this article, we mainly analysis the soil carbon storage of the alpine grassland under different land uses in Qinghai-Tibet Plateau. The samples of this investigation include six experimental fields which are fenced mowing grassland, artificial grassland, winter and spring grazing meadowland, summer and autumn mild grazing land, summer and autumn moderate grazing pasture and summer and autumn severe grazing land and seven soil layers included 0 cm-5 cm, 5 cm-10 cm, 10 cm-20 cm, 20 cm-30 cm, 30 cm-50 cm, 50 cm-70 cm and 70 cm-100 cm. The results show that the soil carbon storage in different soil layers will gradually reduce and the difference was remarkable (P 〈 0.05). What is more, the soil carbon storage of alpine grassland under different land uses has following sequence: winter and spring grazing grassland 〉 summer and autumn mild grazing land 〉 artificial grassland 〉 summer and autumn moderate grazing meadowland 〉 summer and autumn severe grazing pasture 〉 fenced mowing meadow, and the significant difference between them is remarkable (P 〈 0.05).
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB03030401 & XDA05060700)the National Natural Science Foundation of China (Grant Nos. 41171044, 31070391, 41271067)the General Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2013M530716)
文摘Variations in the fractions of biomass allocated to functional components are widely considered as plant responses to resource availability for grassland plants. Observations indicated shoots isometrically relates to roots at the community level but allometrically at the species level in Tibetan alpine grasslands. These differences may result from the specific complementarity of functional groups between functional components, such as leaf, root, stem and reproductive organ. To test the component complementary responses to regional moisture variation, we conducted a multi-site transect survey to measure plant individual size and component biomass fractions of common species belonging to the functional groups: forbs, grasses, legumes and sedges on the Northern Tibetan Plateau in peak growing season in 2010. Along the mean annual precipitation (MAP) gradient, we sampled 7o species, in which 2o are in alpine meadows, 20 in alpine steppes, 15 in alpine desert-steppes and 15 in alpine deserts, respectively. Our results showed that the size of alpine plants is small with individual biomass mostly lower than 1.0 g. Plants keep relative conservative component individual responses moisture functional fractions across alpine grasslands at the level. However, the complementary between functional components to variations specifically differ among groups. These results indicate that functional group diversity may be an effective tool for scaling biomass allocation patterns from individual up to community level. Therefore, it is necessary andvaluable to perform intensive and systematic studies on identification and differentiation the influences of compositional changes in functional groups on ecosystem primary services and processes.
基金supported by the National Natural Science Foundation of China (41271067)National key research and development program (2016YFC0502001)
文摘Global climate change has been found to substantially influence the phenology of rangeland,especially on the Tibetan Plateau. However, there is considerable controversy about the trends and causes of rangeland phenology owing to different phenological exploration methods and lack of ground validation. Little is known about the uncertainty in the exploration accuracy of vegetation phenology.Therefore, in this study, we selected a typical alpine rangeland near Damxung national meteorological station as a case study on central Tibetan Plateau, and identified several important sources influencing phenology to better understand their effects on phenological exploration. We found man-made land use was not easily distinguished from natural rangelands, and therefore this may confound phenological response to climate change in the rangeland. Change trends of phenology explored by four methods were similar, but ratio threshold method(RTM) was more suitable for exploring vegetation phenology in terms of the beginning of growing season(BGS) and end of growing season(EGS). However, some adjustments are needed when RTM is used in extreme drought years. MODIS NDVI/EVI dataset was most suitable for exploring vegetation phenology of BGS and EGS. The discrimination capacities of vegetation phenology declined with decreasing resolution of remote sensing images from MODIS to GIMMS AVHRR datasets. Additionally, distinct trends of phenological change rates were indicated in different terrain conditions, with advance of growing season in high altitudes but delay of season in lower altitudes. Therefore, it was necessary to eliminate interference of complex terrain and man-made land use to ensure the representativeness of natural vegetation. Moreover, selecting the appropriate method to explore rangelands and fully considering the impact of topography are important to accurately analyze the effects of climate change on vegetation phenology.
基金supported by the National Key R&D Program of China(2023YFF1304304)the National Natural Science Foundation of China(31870406 and 42301071)+1 种基金the China Postdoctoral Science Foundation(2023M743633)the Science and Technology Major Project of Tibetan Autonomous Region of China(XZ202201ZD0005G02).
文摘Although biotic and abiotic factors have been confirmed to be critical factors that affect community dynamics,their interactive effects have yet to be fully considered in grassland degradation.Herein,we tested how soil nutrients and microbes regulated plant-soil feedback(PSF)in a degraded alpine grassland.Our results indicated that soil total carbon(STC;from 17.66 to 12.55 g/kg)and total nitrogen(STN;from 3.16 to 2.74 g/kg)exhibited significant(P<0.05)decrease from non-degraded(ND)to severely degraded(SD).Despite higher nutrients in ND soil generating significantly(P<0.05)positive PSF(0.52)on monocots growth when the soil was sterilized,a high proportion of pathogens(36%)in ND non-sterilized soil resulted in a strong negative PSF on monocots.In contrast,the higher phenotypic plasticity of dicots coupled with a higher abundance of mutualists and saprophytes(70%)strongly promoted their survival and growth in SD with infertile soil.Our findings identified a novel mechanism that there was a functional group shift from monocots with higher vulnerability to soil pathogens in the ND fertile soil to dicots with higher dependence on nutritional mutualists in the degraded infertile soil.The emerging irreversible eco-evolutionary in PSF after degradation might cause a predicament for the restoration of degraded grassland.
基金National Key Technology Research and Development Program (No.2010BAE00739 & 2007BAC06B01)National Natural Science Foundation of China (No.41171044)Strategic Priority Research Program of Chinese Academy of Sciences, Climate Change: Carbon Budget and Relevant Issues (No. XDA05060700)
文摘Species richness and diversity indices (Shannon-Wiener index, Simpson dominance index and Pielou evenness index) in alpine grassland ecosystems (alpine meadow, alpine steppe and desert steppe) under grazing-excluded and freely grazed sites were investigated along the Northern Tibetan Plateau Alpine Grassland Transect during summer 2009 and 2010. We found that species richness and diversity have not been significantly altered by short-term grazing exclusion since 2006 at vegetation and regional scales. Species richness and diversity were mainly driven by growing season precipitation (GSP), which accounted for over 87 % of the total variation observed, Species richness and diversity at grazing- excluded and freely grazed sites appear to respond to growing season precipitation in parallel. Species richness exponentially increased with GSP while diversity indices showed positively linear relationships with GSP. This indicates that GSP on the Northern Tibetan Plateau is crucial in regulating species richness and diversity and should be taken into account in future studies on alpine grassland conservation.
基金Supported by the National Natural Science Foundation of China(Nos.31170410 and 31322011)
文摘Soil acidity is an important parameter that can regulate ecosystem structure and function.However,a quantitative understanding of the relationships between soil pH and environmental factors remains unavailable.In this study,relationships of soil pH with both climatic and edaphic factors in alpine grasslands on the Tibetan Plateau,China were quantified using data obtained from a regional soil survey during 2001-2004.Our results showed that soil pH decreased along the gradient of both mean annual temperature and precipitation.Likewise,soil pH exhibited consistent negative correlations with soil moisture and silt content.However,soil organic and inorganic carbon contents played opposite roles in shaping patterns of soil pH:the accumulation of soil organic matter led to higher soil acidity,while the existence of soil inorganic matter was favorable for maintaining higher soil alkalinity.The variation partitioning analysis indicated that the combination of climatic and edaphic variables explained 74.3%of the variation in soil acidity.These results suggest that soil pH could be predicted from routinely-measured variables,allowing a robust pedotransfer function to be developed.The pedotransfer function may facilitate land surface models to generate more reliable predictions on ecosystem structure and function around the world.
基金supported by the Chinese National Key Development Program for Basic Research (Grant Nos. 2014CB954003 & 2015CB954201)the National Natural Science Foundation of China (Grant Nos. 31370491 & 41503073)+1 种基金National 1000 Young Talents Programthe "Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues" of the Chinese Academy of Sciences (Grant No. XDA05050404)
文摘As an important biomarker, fatty acids(FAs) have been extensively used to trace the origin of organic matter in sediments and soils. However, studies of the distribution and abundance of FAs in alpine grassland soils are still rare, especially on the Qinghai-Tibetan Plateau(QTP), the highest plateau in the world, which contributes sediments to many large rivers in Asia. This study investigates the composition, distribution and source of FAs with increasing soil depths from 17 typical alpine grassland sites in the QTP. The most abundant FAs included the ubiquitous C16 FA and even-numbered long-chain FAs(C20–C30), indicating mixed inputs from microbial and higher plant sources. Source apportionment showed that higher plants were the dominant contributor of FAs(approximately 40%) in QTP soils. The abundance of FAs decreased with soil depth, with the highest value(1.08±0.09 mg/g C) at a 0–10 cm depth and the lowest value(0.46±0.12 mg/g C) at a 50–70 cm depth, due to much lower plant inputs into the deeper horizons. The total concentration of FAs was negatively correlated to the mean annual temperature(MAT; P<0.05) and soil p H(P<0.01), suggesting that the preservation of FAs was favored in low-MAT and low-p H soils on the QTP. The abundance of fresh C source FAs increased significantly with the mean annual precipitation(MAP; P<0.05), indicating that high MAP facilitates the accumulation of fresh FAs in QTP soils. Other environmental parameters, such as the soil mineral content(aluminum and iron oxide), microbial community composition as well as litter quality and quantity, may also exert a strong control on the preservation of FAs in QTP soils and warrant further research to better understand the mechanisms responsible for the preservation of FAs in QTP soils.