The data of 16o national meteorological observatory (NMO) stations with long-term monthly temperature data for China were analyzed in this study to show the basin-centered summer temperature decrease against global ...The data of 16o national meteorological observatory (NMO) stations with long-term monthly temperature data for China were analyzed in this study to show the basin-centered summer temperature decrease against global warming in the past half century. The summer and winter isotherm structures of 1950s and 1990s worked out by interpolation show the isotherm structure variations: the isotherm structure generally moves northward in winter, but in summer it is characterized with separate high-temperature and low-temperature centers and the isotherm structure moves inward the centers with global warming, indicating that the temperature in the highland areas increases but that in the lowland areas decreases in the summer of the duration. The possible mechanism of the basin-centered temperature decrease in summer is discussed in this paper.展开更多
This study proposes an equivalent-elevation method to evaluate the integrated effects of latitude and elevation on regional and local-scale permafrost distribution in the Qinghai-Tibet Plateau,and to model the general...This study proposes an equivalent-elevation method to evaluate the integrated effects of latitude and elevation on regional and local-scale permafrost distribution in the Qinghai-Tibet Plateau,and to model the general permafrost-distribution patterns in regional and local-scale area.It is found that the Gaussian curve―an empirical model describing the relation between variations of altitudinal permafrost lower limit (PLL) and latitude in the Northern Hemisphere―could be applied in regional-and local-scale areas in the Qinghai-Tibet Plateau in a latitude-sensitive interval of 30°-50°N.The curve was then used to evaluate the latitudinal effect on permafrost distribution through transforming the latitudinal effect into a kind of altitudinal difference of PLL.This study then calculated the local equivalent-elevation value by overlaying the altitudinal difference of PLL onto real elevation at a certain location.The equivalent-elevation method was verified in an experimental subwatershed of the Qinghai-Tibet Plateau.However,feasibility of the method should be further tested in order to extend for future studies.The use of equivalent-elevation values can build a platform for comparing the regional general permafrost distribution in the plateau,and for basing further evaluations of local factors' effects on regional permafrost distribution.展开更多
The Yalu Tsangpo River basin is a typical semi-arid and cold region in the Qinghai-Tibet Plateau, where significant climate change has been detected in the past decades. The objective of this paper is to demonstrate h...The Yalu Tsangpo River basin is a typical semi-arid and cold region in the Qinghai-Tibet Plateau, where significant climate change has been detected in the past decades. The objective of this paper is to demonstrate how the regional vegetation, especially the typical plant types, responds to the climate changes. In this study, the model of gravity center has been firstly introduced to analyze the spatial-temporal relationship between NDVI and climate factors considering the time-lag effect. The results show that the vegetation grown has been positively influenced by the rainfall and precipitation both in moving tracks of gravity center and time-lag effect especially for the growing season during the past thirteen years. The herbs and shrubs are inclined to be influenced by the change of rainfall and temperature, which is indicated by larger positive correlation coefficients at the 0.05 confidence level and shorter lagging time. For the soil moisture, the significantly negative relationship of NDV-PDI indicates that the growth and productivity of the vegetation are closely related to the short-term soil water, with the correlation coefficients reaching the maximum value of o.81 at Lag 0-1. Among the typicalvegetation types of plateau, the shrubs of low mountain, steppe and meadow are more sensitive to the change of soil moisture with coefficients of -0.95, -0.93, -0.92, respectively. These findings reveal that the spatial and temporal heterogeneity between NDVI and climatic factors are of great ecological significance and practical value for the protection of eco-environment in Qinghai-Tibet Plateau.展开更多
Iron-based single-atom catalysts with nitrogen-doped carbon as support(Fe-SA/NPC)are considered effective alternatives to replace Pt-group metals for scalable application in fuel cells.However,synthesizing high-loadin...Iron-based single-atom catalysts with nitrogen-doped carbon as support(Fe-SA/NPC)are considered effective alternatives to replace Pt-group metals for scalable application in fuel cells.However,synthesizing high-loading Fe-SA catalysts by a simple procedure remains challenging.Herein,we report a high-loading(7.5 wt%)Fe-SA/NPC catalyst prepared by carbon-assisted pyrolysis of metal complexes.Both the nitrogen-doped porous carbon(NPC)support with high specific surface area and ο-phenylenediamine(o-PD)play key roles role in the preparation of high-loading Fe-SA/NPC catalysts.The results of X-ray photoelectron spectroscopy,high-angle annular dark-field scanning transmission electron microscopy,and X-ray absorption fine structure spectroscopy experiments show that the Fe atoms are anchored on the carbon carriers in a single-atom site configuration and coordinated with four of the doped nitrogen atoms of the carbon substrates(Fe-N_(4)).The activities of the Fe-SA/NPC catalysts in the oxygen reduction reaction increased with increasing iron loading.The optimized 250Fe-SA/NPC-800 catalyst exhibited an onset potential 0.97 V of and a half-wave potential of 0.85 V.Our study provides a simple approach for the large-scale synthesis of high-loading single-atom catalysts.展开更多
The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961-2003 across ...The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961-2003 across the Qinghai-Tibet Plateau. The results show that temperature variations not only depend on altitude but also latitude, and there is a gradual decrease in temperature with the increasing altitude and latitude. The overall trend for the vertical temperature lapse rate for the whole plateau is approximately linear. Three methods, namely multivariate composite analysis, simple correlation and traditional stepwise regression, were applied to analyze these three correlations. The results assessed with the first method are well matched to those with the latter two methods. The apparent mean annual near-surface lapse rate is -4.8 ℃ /km and the latitudinal effect is -0.87 ℃ /°latitude. In summer, the altitude influences the temperature variations more significantly with a July lapse rate of -4.3℃/km and the effect of latitude is only -0.28℃ /°latitude. In winter, the reverse happens. The temperature decrease is mainly due to the increase in latitude. The mean January lapse rate is -5.0℃/km, while the effect of latitude is -1.51℃ /°latitude. Comparative analysis for pairs of adjacent stations shows that at a small spatial scale the difference in altitude is the dominant factor affecting differences in mean annual near-surface air temperature, aided to some extent bydifferences of latitude. In contrast, the lapse rate in a small area is greater than the overall mean value for the Qinghai-Tibet Plateau (5 to 13℃ /km). An increasing trend has been detected for the surface lapse rate with increases in altitude. The temperature difference has obvious seasonal variations, and the trends for the southern group of stations (south of 33 o latitude) and for the more northerly group are opposite, mainly because of the differences in seasonal variation at low altitudes. For yearly changes, the temperature for high-altitude stations occurs earlier clearly. Temperature datasets at high altitude stations are well-correlated, and those in Nanjing were lagged for 1 year but less for contemporaneous correlations. The slope of linear trendline of temperature change for available years is clearly related to altitude, and the amplitude of temperature variation is enlarged by high altitude. The change effect in near-surface lapse rate at the varying altitude is approximately 1.0℃ /km on the rate of warming over a hundred-year period.展开更多
Climate change and forage-intake are important components of livestock population systems,but our knowledge about the effects of changes in these properties on livestock is limited,particularly on the Northern Tibetan...Climate change and forage-intake are important components of livestock population systems,but our knowledge about the effects of changes in these properties on livestock is limited,particularly on the Northern Tibetan Plateau.Based on corresponding independent models(CASA and TEM),a human-induced NPP(NPPH) value and forage-intake threshold were obtained to determine their influences on livestock population fluctuation and regrowth on the plateau.The intake threshold value provided compatible results with livestock population performance.If the forage-intake was greater than the critical value of 1.9(kg DM d^(-1) sheep^(-1)),the livestock population increased;otherwise,the livestock population decreased.It takes four years to transfer a disturbance in primary productivity to the next trophic level.The relationships between livestock population and NPP_H value determined population dynamics via the forage-intake value threshold.Improved knowledge on lag effects will advance our understanding of drivers of climatic changes on livestock population dynamics.展开更多
Developing low-cost, high-performance elec- trocatalysts for the oxygen reduction reaction (ORR) is crucial for implementation of fuel cells and metal-air batteries into practical applications. Graphene-based cataly...Developing low-cost, high-performance elec- trocatalysts for the oxygen reduction reaction (ORR) is crucial for implementation of fuel cells and metal-air batteries into practical applications. Graphene-based catalysts have been extensively investigated for ORR in alkaline electrolytes. However, their performance in acidic electrolytes still requires further improvement compared to the Pt/C catalyst. Here we report a self-templating approach to prepare graphene-based sandwich-like porous carbon nanosheets for efficient ORR in both alkaline and acidic electrolytes. Graphene oxides were first used to adsorb m-phenylenediamine molecules which can form a nitrogen-rich polymer network after oxidative poly- merization. Then iron (Fe) salt was introduced into the polymer network and transformed into ORR active Fe-N-C sites along with Fe, FeS, and FEN0.05 nanopartides after pyr- olysis, generating ORR active sandwich-like carbon na- nosheets. Due to the presence of multiple ORR active sites. The as-obtained catalyst exhibited prominent ORR activity with a half-wave potential -30 mV more positive than Pt/C in 0.1 mol L-1 KOH, while the half-wave potential of the catalyst was only -40 mV lower than that of commercial Pt/C in 0.1 mol L-1 HClO4. The unique planar sandwich-like structure could expose abundant active sites for ORR. Meanwhile, the graphene layer and porous structure could simultaneously enhance electrical conductivity and facilitate mass transport. The prominent electrocatalytic activity and durability in both alkaline and acidic electrolytes indicate that these carbon na- nosheets hold great potential as alternatives to precious metal- based catalysts, as demonstrated in zinc-air batteries and proton exchange membrane fuel cells.展开更多
Magnetic properties and magnetocaloric effects (MCEs) of the HoPdA1 compounds with the hexagonal ZrNiAl-type and the orthorhombic TiNiSi-type structures are investigated. Both the compounds are found to be antiferro...Magnetic properties and magnetocaloric effects (MCEs) of the HoPdA1 compounds with the hexagonal ZrNiAl-type and the orthorhombic TiNiSi-type structures are investigated. Both the compounds are found to be antiferromagnet with the Nrel tem- perature TN=12 and 10 K, respectively. A field-induced metamagnetic transition from antiferromagnetic (AFM) state to ferro- magnetic (FM) state is observed below TN. For the hexagonal HoPdA1, a small magnetic field can induce an FM-like state due to a weak AFM coupling, which leads to a high saturation magnetization and gives rise to a large MCE around TN. The maxi- mal value of magnetic entropy change (ASM) is -20.6 J/kg K with a refrigerant capacity (RC) value of 386 J/kg for a field change of 0-5 T. For the orthorhombic HoPdA1, the critical field required for metamagnetic transition is estimated to be about 1.5 T, showing a strong AFM coupling. However, the maximal ASM value is still -13.7 J/kg K around TN for a field change of 0-5 T. The large reversible ASM and considerable RC suggest that HoPdA1 may be an appropriate candidate for magnetic re- frigerant in a low temperature range.展开更多
基金The work is supported by NKBRSF, PR China, No. 2oo2CBII1507 The National Key of Science and Technology, No. 2oo4BAso8B22 the Chinese National Natural Science Foundation (90302006, 90511026);the Hundred Talents Program (2004401, KZCX3-SW-339) of the Chinese Academy of Sciences and the Project for 0utstanding Scientists (40121101) of the National Natural Science Foundation of China.
文摘The data of 16o national meteorological observatory (NMO) stations with long-term monthly temperature data for China were analyzed in this study to show the basin-centered summer temperature decrease against global warming in the past half century. The summer and winter isotherm structures of 1950s and 1990s worked out by interpolation show the isotherm structure variations: the isotherm structure generally moves northward in winter, but in summer it is characterized with separate high-temperature and low-temperature centers and the isotherm structure moves inward the centers with global warming, indicating that the temperature in the highland areas increases but that in the lowland areas decreases in the summer of the duration. The possible mechanism of the basin-centered temperature decrease in summer is discussed in this paper.
基金Under the auspices of Major State Basic Research Development Program of China(No.2010CB951402)National Natural Science Foundation of China(No.41101067)+1 种基金Foundation for Excellent Youth Scholars of Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences(No.Y184A91001)Research Program of State Key Laboratory of Frozen Soil Engineering of Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences(No.SKLFSE-ZQ-10)
文摘This study proposes an equivalent-elevation method to evaluate the integrated effects of latitude and elevation on regional and local-scale permafrost distribution in the Qinghai-Tibet Plateau,and to model the general permafrost-distribution patterns in regional and local-scale area.It is found that the Gaussian curve―an empirical model describing the relation between variations of altitudinal permafrost lower limit (PLL) and latitude in the Northern Hemisphere―could be applied in regional-and local-scale areas in the Qinghai-Tibet Plateau in a latitude-sensitive interval of 30°-50°N.The curve was then used to evaluate the latitudinal effect on permafrost distribution through transforming the latitudinal effect into a kind of altitudinal difference of PLL.This study then calculated the local equivalent-elevation value by overlaying the altitudinal difference of PLL onto real elevation at a certain location.The equivalent-elevation method was verified in an experimental subwatershed of the Qinghai-Tibet Plateau.However,feasibility of the method should be further tested in order to extend for future studies.The use of equivalent-elevation values can build a platform for comparing the regional general permafrost distribution in the plateau,and for basing further evaluations of local factors' effects on regional permafrost distribution.
基金funded by the National Natural Science Foundation of China (Grant No. 41201441, No. 41371363, and No. 41301501)Guangxi Key Laboratory of Spatial Information and Geomatics (Grant No. 1207115-18)the knowledge innovation project of the Chinese academy of sciences (Grant Nos. KZCX2YW-333, KZCXZ-EW-317)
文摘The Yalu Tsangpo River basin is a typical semi-arid and cold region in the Qinghai-Tibet Plateau, where significant climate change has been detected in the past decades. The objective of this paper is to demonstrate how the regional vegetation, especially the typical plant types, responds to the climate changes. In this study, the model of gravity center has been firstly introduced to analyze the spatial-temporal relationship between NDVI and climate factors considering the time-lag effect. The results show that the vegetation grown has been positively influenced by the rainfall and precipitation both in moving tracks of gravity center and time-lag effect especially for the growing season during the past thirteen years. The herbs and shrubs are inclined to be influenced by the change of rainfall and temperature, which is indicated by larger positive correlation coefficients at the 0.05 confidence level and shorter lagging time. For the soil moisture, the significantly negative relationship of NDV-PDI indicates that the growth and productivity of the vegetation are closely related to the short-term soil water, with the correlation coefficients reaching the maximum value of o.81 at Lag 0-1. Among the typicalvegetation types of plateau, the shrubs of low mountain, steppe and meadow are more sensitive to the change of soil moisture with coefficients of -0.95, -0.93, -0.92, respectively. These findings reveal that the spatial and temporal heterogeneity between NDVI and climatic factors are of great ecological significance and practical value for the protection of eco-environment in Qinghai-Tibet Plateau.
文摘Iron-based single-atom catalysts with nitrogen-doped carbon as support(Fe-SA/NPC)are considered effective alternatives to replace Pt-group metals for scalable application in fuel cells.However,synthesizing high-loading Fe-SA catalysts by a simple procedure remains challenging.Herein,we report a high-loading(7.5 wt%)Fe-SA/NPC catalyst prepared by carbon-assisted pyrolysis of metal complexes.Both the nitrogen-doped porous carbon(NPC)support with high specific surface area and ο-phenylenediamine(o-PD)play key roles role in the preparation of high-loading Fe-SA/NPC catalysts.The results of X-ray photoelectron spectroscopy,high-angle annular dark-field scanning transmission electron microscopy,and X-ray absorption fine structure spectroscopy experiments show that the Fe atoms are anchored on the carbon carriers in a single-atom site configuration and coordinated with four of the doped nitrogen atoms of the carbon substrates(Fe-N_(4)).The activities of the Fe-SA/NPC catalysts in the oxygen reduction reaction increased with increasing iron loading.The optimized 250Fe-SA/NPC-800 catalyst exhibited an onset potential 0.97 V of and a half-wave potential of 0.85 V.Our study provides a simple approach for the large-scale synthesis of high-loading single-atom catalysts.
基金financially supported by the National Natural Science Foundation of China (Grant No.40640420072 and No.40771006)
文摘The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961-2003 across the Qinghai-Tibet Plateau. The results show that temperature variations not only depend on altitude but also latitude, and there is a gradual decrease in temperature with the increasing altitude and latitude. The overall trend for the vertical temperature lapse rate for the whole plateau is approximately linear. Three methods, namely multivariate composite analysis, simple correlation and traditional stepwise regression, were applied to analyze these three correlations. The results assessed with the first method are well matched to those with the latter two methods. The apparent mean annual near-surface lapse rate is -4.8 ℃ /km and the latitudinal effect is -0.87 ℃ /°latitude. In summer, the altitude influences the temperature variations more significantly with a July lapse rate of -4.3℃/km and the effect of latitude is only -0.28℃ /°latitude. In winter, the reverse happens. The temperature decrease is mainly due to the increase in latitude. The mean January lapse rate is -5.0℃/km, while the effect of latitude is -1.51℃ /°latitude. Comparative analysis for pairs of adjacent stations shows that at a small spatial scale the difference in altitude is the dominant factor affecting differences in mean annual near-surface air temperature, aided to some extent bydifferences of latitude. In contrast, the lapse rate in a small area is greater than the overall mean value for the Qinghai-Tibet Plateau (5 to 13℃ /km). An increasing trend has been detected for the surface lapse rate with increases in altitude. The temperature difference has obvious seasonal variations, and the trends for the southern group of stations (south of 33 o latitude) and for the more northerly group are opposite, mainly because of the differences in seasonal variation at low altitudes. For yearly changes, the temperature for high-altitude stations occurs earlier clearly. Temperature datasets at high altitude stations are well-correlated, and those in Nanjing were lagged for 1 year but less for contemporaneous correlations. The slope of linear trendline of temperature change for available years is clearly related to altitude, and the amplitude of temperature variation is enlarged by high altitude. The change effect in near-surface lapse rate at the varying altitude is approximately 1.0℃ /km on the rate of warming over a hundred-year period.
基金Chinese Academy of Sciences project(XDB03030400)National Basic Research Program of China(2010CB951704)National Sciences Foundation of China(41171044)
文摘Climate change and forage-intake are important components of livestock population systems,but our knowledge about the effects of changes in these properties on livestock is limited,particularly on the Northern Tibetan Plateau.Based on corresponding independent models(CASA and TEM),a human-induced NPP(NPPH) value and forage-intake threshold were obtained to determine their influences on livestock population fluctuation and regrowth on the plateau.The intake threshold value provided compatible results with livestock population performance.If the forage-intake was greater than the critical value of 1.9(kg DM d^(-1) sheep^(-1)),the livestock population increased;otherwise,the livestock population decreased.It takes four years to transfer a disturbance in primary productivity to the next trophic level.The relationships between livestock population and NPP_H value determined population dynamics via the forage-intake value threshold.Improved knowledge on lag effects will advance our understanding of drivers of climatic changes on livestock population dynamics.
基金supported by the National Basic Research Program of China (973 Program, 2015CB351903)the National Key Research and Development Program (2017YFA0207301)+1 种基金the National Natural Science Foundation of China (51402282, 21474095 and 21476104)CAS Key Research Program of Frontier Sciences (QYZDB-SSW-SLH018)
文摘Developing low-cost, high-performance elec- trocatalysts for the oxygen reduction reaction (ORR) is crucial for implementation of fuel cells and metal-air batteries into practical applications. Graphene-based catalysts have been extensively investigated for ORR in alkaline electrolytes. However, their performance in acidic electrolytes still requires further improvement compared to the Pt/C catalyst. Here we report a self-templating approach to prepare graphene-based sandwich-like porous carbon nanosheets for efficient ORR in both alkaline and acidic electrolytes. Graphene oxides were first used to adsorb m-phenylenediamine molecules which can form a nitrogen-rich polymer network after oxidative poly- merization. Then iron (Fe) salt was introduced into the polymer network and transformed into ORR active Fe-N-C sites along with Fe, FeS, and FEN0.05 nanopartides after pyr- olysis, generating ORR active sandwich-like carbon na- nosheets. Due to the presence of multiple ORR active sites. The as-obtained catalyst exhibited prominent ORR activity with a half-wave potential -30 mV more positive than Pt/C in 0.1 mol L-1 KOH, while the half-wave potential of the catalyst was only -40 mV lower than that of commercial Pt/C in 0.1 mol L-1 HClO4. The unique planar sandwich-like structure could expose abundant active sites for ORR. Meanwhile, the graphene layer and porous structure could simultaneously enhance electrical conductivity and facilitate mass transport. The prominent electrocatalytic activity and durability in both alkaline and acidic electrolytes indicate that these carbon na- nosheets hold great potential as alternatives to precious metal- based catalysts, as demonstrated in zinc-air batteries and proton exchange membrane fuel cells.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50731007 and 51021061)the Knowledge Innovation Project of the Chinese Academy of Sciencesthe High-Technology Research and Development Program of China
文摘Magnetic properties and magnetocaloric effects (MCEs) of the HoPdA1 compounds with the hexagonal ZrNiAl-type and the orthorhombic TiNiSi-type structures are investigated. Both the compounds are found to be antiferromagnet with the Nrel tem- perature TN=12 and 10 K, respectively. A field-induced metamagnetic transition from antiferromagnetic (AFM) state to ferro- magnetic (FM) state is observed below TN. For the hexagonal HoPdA1, a small magnetic field can induce an FM-like state due to a weak AFM coupling, which leads to a high saturation magnetization and gives rise to a large MCE around TN. The maxi- mal value of magnetic entropy change (ASM) is -20.6 J/kg K with a refrigerant capacity (RC) value of 386 J/kg for a field change of 0-5 T. For the orthorhombic HoPdA1, the critical field required for metamagnetic transition is estimated to be about 1.5 T, showing a strong AFM coupling. However, the maximal ASM value is still -13.7 J/kg K around TN for a field change of 0-5 T. The large reversible ASM and considerable RC suggest that HoPdA1 may be an appropriate candidate for magnetic re- frigerant in a low temperature range.