This paper summarizes a set of interpretation technologies for Mesozoic sandstone reservoir prediction in the Longdong loess plateau, such as seismic sequence processing and interpretation based on generalized S trans...This paper summarizes a set of interpretation technologies for Mesozoic sandstone reservoir prediction in the Longdong loess plateau, such as seismic sequence processing and interpretation based on generalized S transform, the eroded paleo-geomorphology interpretation of the top of the Triassic and a variety of lateral reservoir predictions. The effects of employing these technologies are compared and analyzed, as well. The research results show that seismic sequence processing interpretation technology based on generalized S transform can distinguish 3ms (about the thickness of 6 m)sequence interface. Consequently the technology can ascertain the distribution of a sand body of the formation Ch 8 and expand the exploration area of the Xifeng oil field in the Longdong area.展开更多
Based on daily observation data at 222 meteorological stations in China,the characteristics of dust storms between 1997 and 2007 were examined.Next,the relationship between dust events and chlorophyll (Chl) a concentr...Based on daily observation data at 222 meteorological stations in China,the characteristics of dust storms between 1997 and 2007 were examined.Next,the relationship between dust events and chlorophyll (Chl) a concentration in the Yellow Sea was investigated.There were six regions with high annual frequencies of dust storms.The seasonal distribution of dust storms showed spatiotemporal variation.The six regions with highest annual frequencies also exhibited high frequencies of dust storms in spring.Dust storms in most regions occurred in spring.Of all dust storms in China,sixty-five percent of all dust storms occurred during the spring.The area and frequency of dust storms were smaller in fall and winter than in spring and summer.A significant correlation was found between dust events and Chl a concentration in the Yellow Sea.High correlation regions included Qinghai-Xizang region,part of the Hexi Corridor,the western Inner Mongolia and Hetao Regions,and the Hunshandake Desert.The high correlation may be induced by the high ratio of dust storms in the abovementioned regions that arrive over the Yellow Sea,as inferred through a forward trajectory analysis;especially notable is dust transported at a lower altitude (< 3 km).展开更多
As the main body of Qinghai-Tibetan Plateau, North Tibet Plateau is one of three major sandy desertification regions in China and also a representative sandy desertification zone of Qinghai-Tibet Plateau. Accordingly,...As the main body of Qinghai-Tibetan Plateau, North Tibet Plateau is one of three major sandy desertification regions in China and also a representative sandy desertification zone of Qinghai-Tibet Plateau. Accordingly, it is an important region for the study of recent sandy desertification processes and formation mechanism. From such aspects as desertified land types, areas and distributions etc., this paper analyses in detail the sandy desertification status on North Tibet Plateau, and qualitatively and quantitatively deals with the main factors that affect recent sandy desertification processes and the driving mechanism. Research results show that North Tibet Plateau is an important sandy desertification region in China characterized with large desertified land areas, diversified types, high severity, extensive distributions and serious damages. Sandy desertification occurrence and development resulted from combined effects of natural factors, anthropogenic factors, natural processes and man-made processes, of which climatic change is the main driving force.展开更多
Mesoscale convective system (MCS) cloud clusters,defined using an objective recognition analysis based on hourly geostationary infrared satellite data over East Asia during the warm seasons of 1996-2008 (except 2004),...Mesoscale convective system (MCS) cloud clusters,defined using an objective recognition analysis based on hourly geostationary infrared satellite data over East Asia during the warm seasons of 1996-2008 (except 2004),were investigated in this study.The geographical pattern of MCS distribution over East Asia shows several high-frequency centers at low latitudes,including the Indo-China peninsula,the Bay of Bengal,the Andaman Sea,the Brahmaputra river delta,the south China coastal region,and the Philippine Islands.There are several middle-frequency centers in the middle latitudes,e.g.,the central-east of the Tibet Plateau,the Plateau of west Sichuan,Mount Wuyi,and the Sayan Mountains in Russia;whereas in Lake Baikal,the Tarim Basin,the Taklimakan Desert,the Sea of Japan,and the Sea of Okhotsk,rare MCS distributions are observed.MCSs are most intensely active in summer,with the highest monthly frequency in July,which is partly associated with the breaking out and prevailing of the summer monsoon in East Asia.An obvious diurnal cycle feature is also found in MCS activities,which shows that MCSs are triggered in the afternoon,mature in the evening,and dissipate at night.MCS patterns over East Asia can be characterized as small,short-lived,or elongated,which move slowly and usually lead to heavy rains or floods.展开更多
There is a consensus that sediment delivery ratio in the Chinese Loess Plateau is close to 1at the inter-annual timescale. However, little information is available about the sediment delivery at finer timescales. We e...There is a consensus that sediment delivery ratio in the Chinese Loess Plateau is close to 1at the inter-annual timescale. However, little information is available about the sediment delivery at finer timescales. We evaluated the sediment delivery from plots to watersheds at the event or intra-annual, annual, and inter-annual timescales within the Wudinghe river basin, a 30,261 km2 basin in the Loess Plateau. We calculated the ratio of sediment output to sediment input and presented the temporal change of the channel morphology to determine whether sediment deposition occurs.Although a single flood event frequently has a sediment yield exceeding 10,000 t km-2, sediment deposition rarely occurs except during some small runoff events(sediment yield < 5000 t km-2) or dry years(sediment yield < 10,000 t km-2) when moving from slopes up to the main channels of the Wudinghe River. This observation suggests a sediment delivery ratio close to 1 even at the event or intra-annual and the annual timescales, but not necessarily at the interannual timescale. Such a high sediment delivery ratio can be related to hyper-concentrated flows, which have very strong sediment transport capacity even at low flow strength. Because hyper-concentrated flows are well-developed in the whole Loess Plateau, a sediment delivery ratio close to 1 below the interannual timescale possibly remains true for other rivers in the Loess Plateau.展开更多
文摘This paper summarizes a set of interpretation technologies for Mesozoic sandstone reservoir prediction in the Longdong loess plateau, such as seismic sequence processing and interpretation based on generalized S transform, the eroded paleo-geomorphology interpretation of the top of the Triassic and a variety of lateral reservoir predictions. The effects of employing these technologies are compared and analyzed, as well. The research results show that seismic sequence processing interpretation technology based on generalized S transform can distinguish 3ms (about the thickness of 6 m)sequence interface. Consequently the technology can ascertain the distribution of a sand body of the formation Ch 8 and expand the exploration area of the Xifeng oil field in the Longdong area.
基金supported by the National Natural Science Foundation of China(Grant Nos.41005080and41130104)Open Research Program of the Key Laboratory of Meteorological Disaster of the Ministry of Education,Nanjing University of Information Science and Technology(Grant No.KLME1110)
文摘Based on daily observation data at 222 meteorological stations in China,the characteristics of dust storms between 1997 and 2007 were examined.Next,the relationship between dust events and chlorophyll (Chl) a concentration in the Yellow Sea was investigated.There were six regions with high annual frequencies of dust storms.The seasonal distribution of dust storms showed spatiotemporal variation.The six regions with highest annual frequencies also exhibited high frequencies of dust storms in spring.Dust storms in most regions occurred in spring.Of all dust storms in China,sixty-five percent of all dust storms occurred during the spring.The area and frequency of dust storms were smaller in fall and winter than in spring and summer.A significant correlation was found between dust events and Chl a concentration in the Yellow Sea.High correlation regions included Qinghai-Xizang region,part of the Hexi Corridor,the western Inner Mongolia and Hetao Regions,and the Hunshandake Desert.The high correlation may be induced by the high ratio of dust storms in the abovementioned regions that arrive over the Yellow Sea,as inferred through a forward trajectory analysis;especially notable is dust transported at a lower altitude (< 3 km).
文摘As the main body of Qinghai-Tibetan Plateau, North Tibet Plateau is one of three major sandy desertification regions in China and also a representative sandy desertification zone of Qinghai-Tibet Plateau. Accordingly, it is an important region for the study of recent sandy desertification processes and formation mechanism. From such aspects as desertified land types, areas and distributions etc., this paper analyses in detail the sandy desertification status on North Tibet Plateau, and qualitatively and quantitatively deals with the main factors that affect recent sandy desertification processes and the driving mechanism. Research results show that North Tibet Plateau is an important sandy desertification region in China characterized with large desertified land areas, diversified types, high severity, extensive distributions and serious damages. Sandy desertification occurrence and development resulted from combined effects of natural factors, anthropogenic factors, natural processes and man-made processes, of which climatic change is the main driving force.
基金supported by the National Basic Research Program of China(973Program,Grant No.2011CB309704)the Ministry of Finance of China and the China Meteorological Administration for the Special Project of Meteorological Sector(Grant No.GYHY(QX)201006014)the National Natural Science Foundation of China(Grant No.40875022)
文摘Mesoscale convective system (MCS) cloud clusters,defined using an objective recognition analysis based on hourly geostationary infrared satellite data over East Asia during the warm seasons of 1996-2008 (except 2004),were investigated in this study.The geographical pattern of MCS distribution over East Asia shows several high-frequency centers at low latitudes,including the Indo-China peninsula,the Bay of Bengal,the Andaman Sea,the Brahmaputra river delta,the south China coastal region,and the Philippine Islands.There are several middle-frequency centers in the middle latitudes,e.g.,the central-east of the Tibet Plateau,the Plateau of west Sichuan,Mount Wuyi,and the Sayan Mountains in Russia;whereas in Lake Baikal,the Tarim Basin,the Taklimakan Desert,the Sea of Japan,and the Sea of Okhotsk,rare MCS distributions are observed.MCSs are most intensely active in summer,with the highest monthly frequency in July,which is partly associated with the breaking out and prevailing of the summer monsoon in East Asia.An obvious diurnal cycle feature is also found in MCS activities,which shows that MCSs are triggered in the afternoon,mature in the evening,and dissipate at night.MCS patterns over East Asia can be characterized as small,short-lived,or elongated,which move slowly and usually lead to heavy rains or floods.
基金funded by National Natural Science Foundation of China (Grant Nos. 41230746, 41271306)the National Key Technology Research and Development Program (Grant No. 2012BAC09B03)the Open-fund Project of Jiangxi Provincial Key Laboratory of Soil Erosion and Prevention (Grant No. JXSB201301)
文摘There is a consensus that sediment delivery ratio in the Chinese Loess Plateau is close to 1at the inter-annual timescale. However, little information is available about the sediment delivery at finer timescales. We evaluated the sediment delivery from plots to watersheds at the event or intra-annual, annual, and inter-annual timescales within the Wudinghe river basin, a 30,261 km2 basin in the Loess Plateau. We calculated the ratio of sediment output to sediment input and presented the temporal change of the channel morphology to determine whether sediment deposition occurs.Although a single flood event frequently has a sediment yield exceeding 10,000 t km-2, sediment deposition rarely occurs except during some small runoff events(sediment yield < 5000 t km-2) or dry years(sediment yield < 10,000 t km-2) when moving from slopes up to the main channels of the Wudinghe River. This observation suggests a sediment delivery ratio close to 1 even at the event or intra-annual and the annual timescales, but not necessarily at the interannual timescale. Such a high sediment delivery ratio can be related to hyper-concentrated flows, which have very strong sediment transport capacity even at low flow strength. Because hyper-concentrated flows are well-developed in the whole Loess Plateau, a sediment delivery ratio close to 1 below the interannual timescale possibly remains true for other rivers in the Loess Plateau.