The kinetics of batch and fed-batch cultures of recombinant Escherichia coli producing human-like collagen was investigated. In the batch culture, a kinetic model of a simple growth-association system was concluded wi...The kinetics of batch and fed-batch cultures of recombinant Escherichia coli producing human-like collagen was investigated. In the batch culture, a kinetic model of a simple growth-association system was concluded without consideration of cell endogeneous metabolism. The cell lag time, the maximum specific growth rate and Yx/s were determined as 1.75h, 0.65h^-1 and 0.51g·g^-1, respectively. In the fed-batch culture, different specific growth rates were set at (0.15, 0.2, 0.25h^-1) by the method of pseudo-exponential feeding, and the expressions for the specific rate of substrate consumption, the growth kinetics and the product formation kinetics of each phase were obtained. The result shows that the concentrations of cell and product can reach 77.5g·L^-1 and 10.2g·L^-1 respectively. The modal predictions are in good agreement with the experimental data.展开更多
基金Supported by the National Science and Technology Key Funds (2003DA901A32) and the National Natural Science Foundationof China (No.20476085).
文摘The kinetics of batch and fed-batch cultures of recombinant Escherichia coli producing human-like collagen was investigated. In the batch culture, a kinetic model of a simple growth-association system was concluded without consideration of cell endogeneous metabolism. The cell lag time, the maximum specific growth rate and Yx/s were determined as 1.75h, 0.65h^-1 and 0.51g·g^-1, respectively. In the fed-batch culture, different specific growth rates were set at (0.15, 0.2, 0.25h^-1) by the method of pseudo-exponential feeding, and the expressions for the specific rate of substrate consumption, the growth kinetics and the product formation kinetics of each phase were obtained. The result shows that the concentrations of cell and product can reach 77.5g·L^-1 and 10.2g·L^-1 respectively. The modal predictions are in good agreement with the experimental data.