DFSM (doubly fed synchronous machine) presents several advantages such as efficiency improvement, weight reduction and increase of the utilization factor (kW/kg). In this paper the authors focus on impact of the D...DFSM (doubly fed synchronous machine) presents several advantages such as efficiency improvement, weight reduction and increase of the utilization factor (kW/kg). In this paper the authors focus on impact of the DFSM on the efficiency and machine weight in comparison to conventional synchronous generator with wound rotor. Different topologies of DFSM are briefly described and the different methods and models for performances prediction are presented.展开更多
In the previous paper [1], the transient stability of synchronous generator in power system with high-penetration PV (photovoltaic) was assessed by simulation analysis of a single-machine infinite-bus system model. ...In the previous paper [1], the transient stability of synchronous generator in power system with high-penetration PV (photovoltaic) was assessed by simulation analysis of a single-machine infinite-bus system model. Through the simulation analysis, we have obtained some conclusions in terms of the impact of high-penetration PV on the stability. However, for more accurate assessment of the transient stability, it is necessary to analyze various simulation models considering many other power system conditions. This paper presents the results of the analysis for the transient stability simulation performed for IEEE 9-bus system model, in which the effects of various conditions, such as variety of power sources (inverter or rotational machine), load characteristics, existence of LVRT (low-voltage ride-through) capability and fault locations, on the transient stability are investigated.展开更多
Material functionalities strongly depend on the stoichiometry,crystal structure,and homogeneity.Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and...Material functionalities strongly depend on the stoichiometry,crystal structure,and homogeneity.Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and electrical transport at room temperature.In order to verify the origin of the ferromagnetism,we employed a series of structural,chemical,and electronic state characterizations.Combined with electron microscopy and transport measurements,synchrotron-based grazing incident wide angle X-ray scattering,soft X-ray absorption and circular dichroism clearly reveal that the roomtemperature ferromagnetism originates from the In0.23Co0.77O1-v,amorphous phase with a large tunable range of oxygen vacancies.The room-temperature ferromagnetism is tunable from a high saturation magnetization of 500 emu cm-3 to below 25 emu cm-3,with the evolving electrical resistivity from5×103μΩ cm to above 2.5×105 μΩ cm.Inhomogeneous nano-crystallization emerges with decreasing oxygen vacancies,driving the system towards non-ferromagnetism and insulating regime.Our work unfolds the novel functionalities of amorphous nonstoichiometric inhomogeneous oxides,which opens up new opportunities for developing spintronic materials with superior magnetic and transport properties.展开更多
文摘DFSM (doubly fed synchronous machine) presents several advantages such as efficiency improvement, weight reduction and increase of the utilization factor (kW/kg). In this paper the authors focus on impact of the DFSM on the efficiency and machine weight in comparison to conventional synchronous generator with wound rotor. Different topologies of DFSM are briefly described and the different methods and models for performances prediction are presented.
文摘In the previous paper [1], the transient stability of synchronous generator in power system with high-penetration PV (photovoltaic) was assessed by simulation analysis of a single-machine infinite-bus system model. Through the simulation analysis, we have obtained some conclusions in terms of the impact of high-penetration PV on the stability. However, for more accurate assessment of the transient stability, it is necessary to analyze various simulation models considering many other power system conditions. This paper presents the results of the analysis for the transient stability simulation performed for IEEE 9-bus system model, in which the effects of various conditions, such as variety of power sources (inverter or rotational machine), load characteristics, existence of LVRT (low-voltage ride-through) capability and fault locations, on the transient stability are investigated.
基金supported by the National Natural Science Foundation of China (11434006, 11774199, and 51871112)the National Basic Research Program of China (2015CB921502)+1 种基金the 111 Project B13029supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DEAC02-76SF00515。
文摘Material functionalities strongly depend on the stoichiometry,crystal structure,and homogeneity.Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and electrical transport at room temperature.In order to verify the origin of the ferromagnetism,we employed a series of structural,chemical,and electronic state characterizations.Combined with electron microscopy and transport measurements,synchrotron-based grazing incident wide angle X-ray scattering,soft X-ray absorption and circular dichroism clearly reveal that the roomtemperature ferromagnetism originates from the In0.23Co0.77O1-v,amorphous phase with a large tunable range of oxygen vacancies.The room-temperature ferromagnetism is tunable from a high saturation magnetization of 500 emu cm-3 to below 25 emu cm-3,with the evolving electrical resistivity from5×103μΩ cm to above 2.5×105 μΩ cm.Inhomogeneous nano-crystallization emerges with decreasing oxygen vacancies,driving the system towards non-ferromagnetism and insulating regime.Our work unfolds the novel functionalities of amorphous nonstoichiometric inhomogeneous oxides,which opens up new opportunities for developing spintronic materials with superior magnetic and transport properties.