We theoretically investigate high-order harmonic and isolated attosecond pulse generation in a two-color chirped laser field,which is synthesized by a 9 fs/800 nm fundamental chirped pulse and a 9 fs/1600 nm controlli...We theoretically investigate high-order harmonic and isolated attosecond pulse generation in a two-color chirped laser field,which is synthesized by a 9 fs/800 nm fundamental chirped pulse and a 9 fs/1600 nm controlling chirped pulse.Our numerical results show that,by using this method,not only is the harmonic cutoff significantly extended to the 948th order harmonic,but also the bandwidth of the supercontinuum spectrum is effectively broadened to about 1342 eV.In addition,due to the introduction of the chirp,the long quantum path is suppressed and only the short one is selected,and then an isolated 28 as pulse with a bandwidth of 155 eV is obtained directly.展开更多
We theoretically study the high-order harmonic generation (HHG) from a hydrogen atom in an intense few-cycle chirped fundamental laser in combination with an ultraviolet (uv) controlling pulse. The high-order harm...We theoretically study the high-order harmonic generation (HHG) from a hydrogen atom in an intense few-cycle chirped fundamental laser in combination with an ultraviolet (uv) controlling pulse. The high-order harmonic spectrum is calculated by solving the time-dependent Schr6dinger equation using the split-operator method. In our calculation, we present the difference of the high-order harmonic spectrum from one-dimensional (1D) model hydrogen atom and three-dimensional (3D) real hydrogen atom. We found that the plateau of the high-order harmonic generation from the 1D ease and 3D case are all extended effectively to Iv -k 35Up due to the presence of the chirped laser pulse and the HHG supercontinuum spectrum is generated by adding an ultraviolet controlling pulse at a proper time, but the efficiency of the HHC for 3D case is more higher at the near cut-off region than the 1D case. Therefore, the generation of the attosecond pulse by synthesizing the harmonics near cut-off region have some slight differences between 1D and 3D simulations. As a real 3D case study, we show that an isolated 18 as pulse with a bandwidth of 232.5 eV is generated directly by optmizing the combination laser fields.展开更多
基金Supported by the Science Foundation of Baoji University of Arts and Sciences of China under Grant Nos. Zk10122,ZK11061,ZK11135,ZK11060,and ZK1032
文摘We theoretically investigate high-order harmonic and isolated attosecond pulse generation in a two-color chirped laser field,which is synthesized by a 9 fs/800 nm fundamental chirped pulse and a 9 fs/1600 nm controlling chirped pulse.Our numerical results show that,by using this method,not only is the harmonic cutoff significantly extended to the 948th order harmonic,but also the bandwidth of the supercontinuum spectrum is effectively broadened to about 1342 eV.In addition,due to the introduction of the chirp,the long quantum path is suppressed and only the short one is selected,and then an isolated 28 as pulse with a bandwidth of 155 eV is obtained directly.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 11044007 and 11047016the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20096203110001+1 种基金the Young Teachers Foundation of Northwest Normal University under Grant No. NWNU-LKQN-10-5Foundation of North west Normal University under Grant No. NWNU-KJCXGC-03-62
文摘We theoretically study the high-order harmonic generation (HHG) from a hydrogen atom in an intense few-cycle chirped fundamental laser in combination with an ultraviolet (uv) controlling pulse. The high-order harmonic spectrum is calculated by solving the time-dependent Schr6dinger equation using the split-operator method. In our calculation, we present the difference of the high-order harmonic spectrum from one-dimensional (1D) model hydrogen atom and three-dimensional (3D) real hydrogen atom. We found that the plateau of the high-order harmonic generation from the 1D ease and 3D case are all extended effectively to Iv -k 35Up due to the presence of the chirped laser pulse and the HHG supercontinuum spectrum is generated by adding an ultraviolet controlling pulse at a proper time, but the efficiency of the HHC for 3D case is more higher at the near cut-off region than the 1D case. Therefore, the generation of the attosecond pulse by synthesizing the harmonics near cut-off region have some slight differences between 1D and 3D simulations. As a real 3D case study, we show that an isolated 18 as pulse with a bandwidth of 232.5 eV is generated directly by optmizing the combination laser fields.