The carbon (C) sequestration potential of turfgrass systems has been investigated and demonstrated from several studies. The role of these ecosystems in continental and Mediterranean climates though, is not yet clea...The carbon (C) sequestration potential of turfgrass systems has been investigated and demonstrated from several studies. The role of these ecosystems in continental and Mediterranean climates though, is not yet clearly understood because environmental limiting factors and management intensities can strongly influence the overall C budget. The aim of the present study is to improve the understanding of the mechanisms underlying C fluxes in a turfgrass ecosystem and to assess its C sequestration potential by estimating the annual C budget. NEE (Net Ecosystem Exchange) of turfgrass was calculated in its seasonal variation over one year, and compared between areas characterized by different degrees of maintenance. The C sequestration potential of the turfgrass was investigated in a golf course near Verona (Italy), adopting a small-chamber enclosure approach. The measurements of gas exchanges between biosphere and atmosphere, permitted to estimate the NEE, as a function of different management intensities. The intensity of management seems to have influence on its C balance. This study needs further research to understand which maintenance variables are determinant on turfgrass C sequestration.展开更多
Naval ship deperming is effective to reduce the potential damage from sea mines some of which sense magnetic field of the ship, and thus, is an important treatment of naval ships in the recent world. Large electric cu...Naval ship deperming is effective to reduce the potential damage from sea mines some of which sense magnetic field of the ship, and thus, is an important treatment of naval ships in the recent world. Large electric current is required to impose the magnetic field on the ship hull, which in turn means that the deperming coil needs to be wound on ship hull when the coil is composed of conventional conductive materials, such as copper. We considered a few HTS (high temperature superconducting) coil systems to deperm naval ships because we expect the shorter deperming time and lower manual workload for ship deperming operation, compared conventional conductor coil systems. We have in the past presented a solution using a fiat two-coil system arranged on seabed with tightly bound HTS conductor by analytical calculation of magnetic field on the conductor. By considering present and already developed technologies, a conductor with cylindrically wound on the core arranged as fiat multi-turn coils on seabed was designed using analytical methods.展开更多
Traditional thermal methods of drying food have often led to loss of flavours, nutrients, vitamins, etc., which encourages non-thermal pretreatments such as osmotic dehydration (OD) and/or high electric field (HEF...Traditional thermal methods of drying food have often led to loss of flavours, nutrients, vitamins, etc., which encourages non-thermal pretreatments such as osmotic dehydration (OD) and/or high electric field (HEF) application to improve the overall product quality. The aim of this study was to evaluate the effect of osmotic dehydration (50% sucrose) with high electric field strengths of 0.5 and 1.0 kV/cm as pretreatments on the drying kinetics and mass transfer of green apples during convective drying at 65 ~C and microwave drying at 1 W/g. The added value of the OD and HEF on the drying kinetics, and the effective mass transfer coefficients of the subsequent drying methods were investigated through this research. The efficacy of these pre-treatments was assessed and compared using cell disintegration index, product texture and thus bring forth new correlations between these pre-treatments and the cell disintegration index using dielectric spectroscopy and its effect on the product texture.展开更多
This paper is concerned with the decay estimate of high-order energy for a class of special time-dependent structural damped systems represented by Fourier multipliers. This model is widely used in the fields of semic...This paper is concerned with the decay estimate of high-order energy for a class of special time-dependent structural damped systems represented by Fourier multipliers. This model is widely used in the fields of semiconductivity, superconductivity, electromagnetic waves, electrolyte and electrode materials, etc.展开更多
PbTiO_(3)-BiScO_(3) ceramics possess high piezoelectricity and high Curie temperature simultaneously,presenting a very promising candidate for high-temperature actuators and transducers.Figuring out the underlying pie...PbTiO_(3)-BiScO_(3) ceramics possess high piezoelectricity and high Curie temperature simultaneously,presenting a very promising candidate for high-temperature actuators and transducers.Figuring out the underlying piezoelectric mechanisms is of great importance for its application.Herein,we reveal the quantified intrinsic and extrinsic contributions to the high electrostrain of the morphotropic composition with phase coexistence by employing the advanced in situ electrical biasing high-energy synchrotron X-ray diffraction combined with the STRAP(strain,texture,and Rietveld analysis for piezoceramics from diffraction)methodology.An electric field-induced phase transformation is observed between the coexisting tetragonal and rhombohedral phases.It is found that the tetragonal phase contributes most of the domain switching strain,while the predominant lattice strain is from the rhombohedral phase.With phase fraction changes,the quantitative results demonstrate that the fieldinduced electrostrain is mainly contributed by the intrinsic lattice strain.In contrast,the high irreversible domain switching strain dominates the large remanent strain.It implies that transforming the large remanent strain into reversible strain would be a strategic direction to improve the piezoelectric response.The present results provide a further understanding of the high piezoelectricity and could help to advance the application of PbTiO_(3)-BiScO_(3).展开更多
文摘The carbon (C) sequestration potential of turfgrass systems has been investigated and demonstrated from several studies. The role of these ecosystems in continental and Mediterranean climates though, is not yet clearly understood because environmental limiting factors and management intensities can strongly influence the overall C budget. The aim of the present study is to improve the understanding of the mechanisms underlying C fluxes in a turfgrass ecosystem and to assess its C sequestration potential by estimating the annual C budget. NEE (Net Ecosystem Exchange) of turfgrass was calculated in its seasonal variation over one year, and compared between areas characterized by different degrees of maintenance. The C sequestration potential of the turfgrass was investigated in a golf course near Verona (Italy), adopting a small-chamber enclosure approach. The measurements of gas exchanges between biosphere and atmosphere, permitted to estimate the NEE, as a function of different management intensities. The intensity of management seems to have influence on its C balance. This study needs further research to understand which maintenance variables are determinant on turfgrass C sequestration.
文摘Naval ship deperming is effective to reduce the potential damage from sea mines some of which sense magnetic field of the ship, and thus, is an important treatment of naval ships in the recent world. Large electric current is required to impose the magnetic field on the ship hull, which in turn means that the deperming coil needs to be wound on ship hull when the coil is composed of conventional conductive materials, such as copper. We considered a few HTS (high temperature superconducting) coil systems to deperm naval ships because we expect the shorter deperming time and lower manual workload for ship deperming operation, compared conventional conductor coil systems. We have in the past presented a solution using a fiat two-coil system arranged on seabed with tightly bound HTS conductor by analytical calculation of magnetic field on the conductor. By considering present and already developed technologies, a conductor with cylindrically wound on the core arranged as fiat multi-turn coils on seabed was designed using analytical methods.
文摘Traditional thermal methods of drying food have often led to loss of flavours, nutrients, vitamins, etc., which encourages non-thermal pretreatments such as osmotic dehydration (OD) and/or high electric field (HEF) application to improve the overall product quality. The aim of this study was to evaluate the effect of osmotic dehydration (50% sucrose) with high electric field strengths of 0.5 and 1.0 kV/cm as pretreatments on the drying kinetics and mass transfer of green apples during convective drying at 65 ~C and microwave drying at 1 W/g. The added value of the OD and HEF on the drying kinetics, and the effective mass transfer coefficients of the subsequent drying methods were investigated through this research. The efficacy of these pre-treatments was assessed and compared using cell disintegration index, product texture and thus bring forth new correlations between these pre-treatments and the cell disintegration index using dielectric spectroscopy and its effect on the product texture.
基金supported by the National Natural Science Foundation of China (No.10871175)
文摘This paper is concerned with the decay estimate of high-order energy for a class of special time-dependent structural damped systems represented by Fourier multipliers. This model is widely used in the fields of semiconductivity, superconductivity, electromagnetic waves, electrolyte and electrode materials, etc.
基金supported by the National Natural Science Foundation of China(21825102,22075014 and 12004032)the Fundamental Research Funds for the Central Universities,China(06500162)+2 种基金the National Postdoctoral Program for Innovative Talents(BX20200044)German Research Society(DFG)(HI 1867/1-2)supported by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences,under Contract No.DE-AC02-06CH11357.
文摘PbTiO_(3)-BiScO_(3) ceramics possess high piezoelectricity and high Curie temperature simultaneously,presenting a very promising candidate for high-temperature actuators and transducers.Figuring out the underlying piezoelectric mechanisms is of great importance for its application.Herein,we reveal the quantified intrinsic and extrinsic contributions to the high electrostrain of the morphotropic composition with phase coexistence by employing the advanced in situ electrical biasing high-energy synchrotron X-ray diffraction combined with the STRAP(strain,texture,and Rietveld analysis for piezoceramics from diffraction)methodology.An electric field-induced phase transformation is observed between the coexisting tetragonal and rhombohedral phases.It is found that the tetragonal phase contributes most of the domain switching strain,while the predominant lattice strain is from the rhombohedral phase.With phase fraction changes,the quantitative results demonstrate that the fieldinduced electrostrain is mainly contributed by the intrinsic lattice strain.In contrast,the high irreversible domain switching strain dominates the large remanent strain.It implies that transforming the large remanent strain into reversible strain would be a strategic direction to improve the piezoelectric response.The present results provide a further understanding of the high piezoelectricity and could help to advance the application of PbTiO_(3)-BiScO_(3).