For the very soft clay with high water content, its void ratio, compressibility coefficient and permeability varied with stress during consolidation. It is necessary to use large strain consolidation based on the perm...For the very soft clay with high water content, its void ratio, compressibility coefficient and permeability varied with stress during consolidation. It is necessary to use large strain consolidation based on the permeability-void ratio relationship and effective stress-void ratio relationship to analyze these properties. To overcome the disadvantages of conventional oedometer test, and determine the effective stress-void relations of this kind of soil, osmotic pressure consolidation test for highly plastic clay study and the expression of permeability-void ratio are performed. Therefore, the decided properties will be reasonably used for solving the large strain consolidation equation.展开更多
The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between c...The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between clay core-wall and concrete cut-offwall,so the hydro-mechanical coupling mechanisms on the joint under high stress,high hydraulic gradient,and large shear deformation are of great importance for the evaluation of dam safety.The hydro-mechanical coupling characteristics of the joint of the highly plastic clay and the concrete cut-off wall in a high earth and rockfill dam in China were studied by using a newly designed soil-structure contact erosion apparatus.The experimental results indicate that:1) Shear failure on the joint is due to the hydro-mechanical coupling effect of stress and seepage failure.The seepage failure will induce the final shear failure when the ratio of deviatoric stress to confining pressure is within 1.0-1.2; 2) A negative exponential permeability empirical model for the joint denoted by a newly defined principal stress function,which considers the coupling effect of confining pressure and axial pressure on the permeability,is established based on hydro-mechanical coupling experiments.3) The variation of the settlement before and after seepage failure is very different.The settlement before seepage failure changes very slowly,while it increases significantly after the seepage failure.4) The stress-strain relationship is of a strain softening type.5) Flow along the joint still follows Darcian flow rule.The results will provide an important theoretical basis for the further evaluation on the safety of the high earth and rockfill dam.展开更多
A new type of transferring structure for steel reinforced concrete (SRC) beams is used in high building. The pushover analysis method was used to study the failure mechanism and ductility of SRC transferring structure...A new type of transferring structure for steel reinforced concrete (SRC) beams is used in high building. The pushover analysis method was used to study the failure mechanism and ductility of SRC transferring structure through consulting pseudo-static test results for the structure. And, the occurrence order and position of the plastic hinge, the weak story and seismic capacity of high building with SRC transferring story were also studied through consulting shaking table test results for the high building, showing that the seismic behavior of high building with SRC transferring story is good.展开更多
文摘For the very soft clay with high water content, its void ratio, compressibility coefficient and permeability varied with stress during consolidation. It is necessary to use large strain consolidation based on the permeability-void ratio relationship and effective stress-void ratio relationship to analyze these properties. To overcome the disadvantages of conventional oedometer test, and determine the effective stress-void relations of this kind of soil, osmotic pressure consolidation test for highly plastic clay study and the expression of permeability-void ratio are performed. Therefore, the decided properties will be reasonably used for solving the large strain consolidation equation.
基金Projects(51009053,51079039)supported by the National Natural Science Foundation of ChinaProject(20100094120004)supported by the Doctoral Program of Higher Education of China
文摘The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between clay core-wall and concrete cut-offwall,so the hydro-mechanical coupling mechanisms on the joint under high stress,high hydraulic gradient,and large shear deformation are of great importance for the evaluation of dam safety.The hydro-mechanical coupling characteristics of the joint of the highly plastic clay and the concrete cut-off wall in a high earth and rockfill dam in China were studied by using a newly designed soil-structure contact erosion apparatus.The experimental results indicate that:1) Shear failure on the joint is due to the hydro-mechanical coupling effect of stress and seepage failure.The seepage failure will induce the final shear failure when the ratio of deviatoric stress to confining pressure is within 1.0-1.2; 2) A negative exponential permeability empirical model for the joint denoted by a newly defined principal stress function,which considers the coupling effect of confining pressure and axial pressure on the permeability,is established based on hydro-mechanical coupling experiments.3) The variation of the settlement before and after seepage failure is very different.The settlement before seepage failure changes very slowly,while it increases significantly after the seepage failure.4) The stress-strain relationship is of a strain softening type.5) Flow along the joint still follows Darcian flow rule.The results will provide an important theoretical basis for the further evaluation on the safety of the high earth and rockfill dam.
文摘A new type of transferring structure for steel reinforced concrete (SRC) beams is used in high building. The pushover analysis method was used to study the failure mechanism and ductility of SRC transferring structure through consulting pseudo-static test results for the structure. And, the occurrence order and position of the plastic hinge, the weak story and seismic capacity of high building with SRC transferring story were also studied through consulting shaking table test results for the high building, showing that the seismic behavior of high building with SRC transferring story is good.