To avoid spatial aliasing problems in broad band high resolution seismic sections, I present a high density migration processing solution. I first analyze the spatial aliasing definition for stack and migration seismi...To avoid spatial aliasing problems in broad band high resolution seismic sections, I present a high density migration processing solution. I first analyze the spatial aliasing definition for stack and migration seismic sections and point out the differences between the two. We recognize that migration sections more often show spatial aliasing than stacked sections. Second, from wave propagation theory, I know that migration output is a new spatial sampling process and seismic prestack time migration can provide the high density sampling to prevent spatial aliasing on high resolution migration sections. Using a 2D seismic forward modeling analysis, I have found that seismic spatial aliasing noise can be eliminated by high density spatial sampling in prestack migration. In a 3D seismic data study for Daqing Oilfield in the Songliao Basin, I have also found that seismic sections obtained by high-density spatial sampling (10 ×10 m) in prestack migration have less spatial aliasing noise than those obtained by conventional low density spatial sampling (20 × 40 m) in prestack migration.展开更多
China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a...China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a new technology to increase the accuracy of seismic exploration. We briefly discuss point source and receiver technology, analyze the high density spatial sampling in situ method, introduce the symmetric sampling principles presented by Gijs J. O. Vermeer, and discuss high density spatial sampling technology from the point of view of wave field continuity. We emphasize the analysis of the high density spatial sampling characteristics, including the high density first break advantages for investigation of near surface structure, improving static correction precision, the use of dense receiver spacing at short offsets to increase the effective coverage at shallow depth, and the accuracy of reflection imaging. Coherent noise is not aliased and the noise analysis precision and suppression increases as a result. High density spatial sampling enhances wave field continuity and the accuracy of various mathematical transforms, which benefits wave field separation. Finally, we point out that the difficult part of high density spatial sampling technology is the data processing. More research needs to be done on the methods of analyzing and processing huge amounts of seismic data.展开更多
文摘To avoid spatial aliasing problems in broad band high resolution seismic sections, I present a high density migration processing solution. I first analyze the spatial aliasing definition for stack and migration seismic sections and point out the differences between the two. We recognize that migration sections more often show spatial aliasing than stacked sections. Second, from wave propagation theory, I know that migration output is a new spatial sampling process and seismic prestack time migration can provide the high density sampling to prevent spatial aliasing on high resolution migration sections. Using a 2D seismic forward modeling analysis, I have found that seismic spatial aliasing noise can be eliminated by high density spatial sampling in prestack migration. In a 3D seismic data study for Daqing Oilfield in the Songliao Basin, I have also found that seismic sections obtained by high-density spatial sampling (10 ×10 m) in prestack migration have less spatial aliasing noise than those obtained by conventional low density spatial sampling (20 × 40 m) in prestack migration.
文摘China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a new technology to increase the accuracy of seismic exploration. We briefly discuss point source and receiver technology, analyze the high density spatial sampling in situ method, introduce the symmetric sampling principles presented by Gijs J. O. Vermeer, and discuss high density spatial sampling technology from the point of view of wave field continuity. We emphasize the analysis of the high density spatial sampling characteristics, including the high density first break advantages for investigation of near surface structure, improving static correction precision, the use of dense receiver spacing at short offsets to increase the effective coverage at shallow depth, and the accuracy of reflection imaging. Coherent noise is not aliased and the noise analysis precision and suppression increases as a result. High density spatial sampling enhances wave field continuity and the accuracy of various mathematical transforms, which benefits wave field separation. Finally, we point out that the difficult part of high density spatial sampling technology is the data processing. More research needs to be done on the methods of analyzing and processing huge amounts of seismic data.