Willow species (Salix fragilis L. and S. alba L.) are important elements of cold desert agroforestry systems in the Lahaul valley, north- western Himalaya. Their ability to grow through shoot-cuttings plantations un...Willow species (Salix fragilis L. and S. alba L.) are important elements of cold desert agroforestry systems in the Lahaul valley, north- western Himalaya. Their ability to grow through shoot-cuttings plantations under extreme and xeric climatic conditions of cold deserts, makes them ecologically suited and socially accepted for forestry programmes. Willow species in cold deserts may combat desertification and can thrive well in these areas as compared to any other species. Salixfragilis L. and S. alba L. are under cultivation in the Lahaul valley. However, S. fragilis is widely cultivated under the agroforestry and plantation forestry systems. In the Lahaul valley, willow species are used as subsistence resources and for socio-religious purposes. The present study was carried out to examine the vegetation analysis, density, diversity and distribution of willow species, present status and potential willow plantation sites and uses. The results of present study revealed that a higher species density was recorded at middle altitude villages (Jahlma-3,ooo m asl and Hinsa-2,7oo m asl), except, a higher density of S. fragilis was at Khoksar (3,200 m asl) in plantation forestry on south-facing slopes. In forests, S. fragilis was planted mainly along the water channels, resulted a low density. The shrubby willow species occurred naturally in the entire Lahaul valley up to an altitude of 3,850 m asl. 81% of households felt the scarcity of willow trees, whereas, 19% of households were satisfied with the willow trees they owned. The majority of willow species were planted in middle altitudes on privately owned irrigated lands. It was rated most potential prospective willow planting siteby the farmers. Small size of land-holdings was one of the main constraints for establishing a large number of willow plantations. Commercial aspects of willow species need to be investigated to encourage the farmers to plant more willows further.展开更多
The current need to fasten the implementation of renewable energies greatly depends on the development of competitive storage devices, and while there is not a single technology which is likely capable to competitivel...The current need to fasten the implementation of renewable energies greatly depends on the development of competitive storage devices, and while there is not a single technology which is likely capable to competitively cover the wide range of possible demands, electrochemical technologies are one of the most promising for many of them. For the realization of this promise, new materials fulfilling criteria such as high energy density, high power density, competitive cost, reliability, and environmental compatibility need to be developed in the near future. Electrochemical energy storage devices can be classified into two main technologies: supercapacitors and batteries (including redox flow batteries). Materials and applications for these technologies are discussed and compared, listing current status, technical and strategic challenges.展开更多
Supercapacitors operating in aqueous solutions are low cost energy storage devices with high cycling stability and fast charging and discharging capabilities, but generally suffer from low energy densities. Here, we g...Supercapacitors operating in aqueous solutions are low cost energy storage devices with high cycling stability and fast charging and discharging capabilities, but generally suffer from low energy densities. Here, we grow Ni(OH)2 nanoplates and RuO2 nanoparticles on high quality graphene sheets in order to maximize the specific capacitances of these materials. We then pair up a Ni(OH)2/graphene electrode with a RuO2/graphene electrode to afford a high performance asymmetrical supercapacitor with high energy and power density operating in aqueous solutions at a voltage of -1.5 V. The asymmetrical supercapacitor exhibits significantly higher energy densities than symmetrical RuO2-RuO2 supercapacitors or asymmetrical supercapacitors based on either RuO2- carbon or Ni(OH)2-carbon electrode pairs. A high energy density of -48 W.h/kg at a power density of -0.23 kW/kg, and a high power density of -21 kW/kg at an energy density of N14 W-h/kg have been achieved with our Ni(OH)2/graphene and RuO2/graphene asymmetrical supercapacitor. Thus, pairing up metal-oxide/graphene and metal-hydroxide/graphene hybrid materials for asymmetrical supercapacitors represents a new approach to high performance energy storage.展开更多
For energy storage system,it is still a huge challenge to achieve high energy density and high power density simultaneously.One potential solution is to fabricate electrochemical capacitors(ECs),which store electric e...For energy storage system,it is still a huge challenge to achieve high energy density and high power density simultaneously.One potential solution is to fabricate electrochemical capacitors(ECs),which store electric energy through surface ion adsorption or redox reactions.Here we report a new electrode material,heavy nitrogen-doped(9.29 at.%)black titania(TiO2-x:N).This unique hybrid material,consisting of conductive amorphous shells supported on nanocrystalline cores,has rapid N-mediated redox reaction(TiO2-xNy+zH++ze■-TiO2-xNyHz),especially in acidic solutions,providing a specific capacitance of 750 Fg-1at 2 m V s-1(707 Fg-1at 1 A g-1),great rate capability(503 F g-1at 20 Ag-1),and maintain stable after initial fading.Being a new developed supercapacitor material,nitrogen-doped black titania may revive the oxide-based supercapacitors.展开更多
基金financial support by the Ministry of Environment and Forests,Government of India,New Delhi,is gratefully acknowledged
文摘Willow species (Salix fragilis L. and S. alba L.) are important elements of cold desert agroforestry systems in the Lahaul valley, north- western Himalaya. Their ability to grow through shoot-cuttings plantations under extreme and xeric climatic conditions of cold deserts, makes them ecologically suited and socially accepted for forestry programmes. Willow species in cold deserts may combat desertification and can thrive well in these areas as compared to any other species. Salixfragilis L. and S. alba L. are under cultivation in the Lahaul valley. However, S. fragilis is widely cultivated under the agroforestry and plantation forestry systems. In the Lahaul valley, willow species are used as subsistence resources and for socio-religious purposes. The present study was carried out to examine the vegetation analysis, density, diversity and distribution of willow species, present status and potential willow plantation sites and uses. The results of present study revealed that a higher species density was recorded at middle altitude villages (Jahlma-3,ooo m asl and Hinsa-2,7oo m asl), except, a higher density of S. fragilis was at Khoksar (3,200 m asl) in plantation forestry on south-facing slopes. In forests, S. fragilis was planted mainly along the water channels, resulted a low density. The shrubby willow species occurred naturally in the entire Lahaul valley up to an altitude of 3,850 m asl. 81% of households felt the scarcity of willow trees, whereas, 19% of households were satisfied with the willow trees they owned. The majority of willow species were planted in middle altitudes on privately owned irrigated lands. It was rated most potential prospective willow planting siteby the farmers. Small size of land-holdings was one of the main constraints for establishing a large number of willow plantations. Commercial aspects of willow species need to be investigated to encourage the farmers to plant more willows further.
文摘The current need to fasten the implementation of renewable energies greatly depends on the development of competitive storage devices, and while there is not a single technology which is likely capable to competitively cover the wide range of possible demands, electrochemical technologies are one of the most promising for many of them. For the realization of this promise, new materials fulfilling criteria such as high energy density, high power density, competitive cost, reliability, and environmental compatibility need to be developed in the near future. Electrochemical energy storage devices can be classified into two main technologies: supercapacitors and batteries (including redox flow batteries). Materials and applications for these technologies are discussed and compared, listing current status, technical and strategic challenges.
文摘Supercapacitors operating in aqueous solutions are low cost energy storage devices with high cycling stability and fast charging and discharging capabilities, but generally suffer from low energy densities. Here, we grow Ni(OH)2 nanoplates and RuO2 nanoparticles on high quality graphene sheets in order to maximize the specific capacitances of these materials. We then pair up a Ni(OH)2/graphene electrode with a RuO2/graphene electrode to afford a high performance asymmetrical supercapacitor with high energy and power density operating in aqueous solutions at a voltage of -1.5 V. The asymmetrical supercapacitor exhibits significantly higher energy densities than symmetrical RuO2-RuO2 supercapacitors or asymmetrical supercapacitors based on either RuO2- carbon or Ni(OH)2-carbon electrode pairs. A high energy density of -48 W.h/kg at a power density of -0.23 kW/kg, and a high power density of -21 kW/kg at an energy density of N14 W-h/kg have been achieved with our Ni(OH)2/graphene and RuO2/graphene asymmetrical supercapacitor. Thus, pairing up metal-oxide/graphene and metal-hydroxide/graphene hybrid materials for asymmetrical supercapacitors represents a new approach to high performance energy storage.
基金financially supported by the National key R&D Program of China(2016YFB0901600)the Key Research Program of Chinese Academy of Sciences(QYZDJ-SSWJSC013)Chen IW was supported by U.S.Department of Energy BES grant DE-FG02-11ER46814used the facilities(Laboratory for Research on the Structure of Matter)supported by NSF grant DMR-1120901。
文摘For energy storage system,it is still a huge challenge to achieve high energy density and high power density simultaneously.One potential solution is to fabricate electrochemical capacitors(ECs),which store electric energy through surface ion adsorption or redox reactions.Here we report a new electrode material,heavy nitrogen-doped(9.29 at.%)black titania(TiO2-x:N).This unique hybrid material,consisting of conductive amorphous shells supported on nanocrystalline cores,has rapid N-mediated redox reaction(TiO2-xNy+zH++ze■-TiO2-xNyHz),especially in acidic solutions,providing a specific capacitance of 750 Fg-1at 2 m V s-1(707 Fg-1at 1 A g-1),great rate capability(503 F g-1at 20 Ag-1),and maintain stable after initial fading.Being a new developed supercapacitor material,nitrogen-doped black titania may revive the oxide-based supercapacitors.