Using the measurement of stable carbon isotopes in leaves as a tool to investigate photosynthetic pathway of 102 plant species grown at an alpine meadow ecosystem, at the foot of the Qilian Mountain, Qinghai, China. T...Using the measurement of stable carbon isotopes in leaves as a tool to investigate photosynthetic pathway of 102 plant species grown at an alpine meadow ecosystem, at the foot of the Qilian Mountain, Qinghai, China. The results indicate that the delta C-13 values of plants have a narrow range from -28.24parts per thousand to -24.84parts per thousand, which means that none of the species examined belongs to C-4 and crassulaceous acid metabolism (CAM) photosynthetic pathway and all of these species perform photosynthesis through the C-3 pathway. This is likely due to a long-term adaptation to environments at the alpine meadow ecosystem.展开更多
Alpine ecosystems in permafrost region are extremely sensitive to climate changes.To determine spatial pattern variations in alpine meadow and alpine steppe biomass dynamics in the permafrost region of the Qinghai-Tib...Alpine ecosystems in permafrost region are extremely sensitive to climate changes.To determine spatial pattern variations in alpine meadow and alpine steppe biomass dynamics in the permafrost region of the Qinghai-Tibet Plateau,China,calibrated with historical datasets of above-ground biomass production within the permafrost region's two main ecosystems,an ecosystem-biomass model was developed by employing empirical spatialdistribution models of the study region's precipitation,air temperature and soil temperature.This model was then successfully used to simulate the spatio-temporal variations in annual alpine ecosystem biomass production under climate change.For a 0.44°C decade-1 rise in air temperature,the model predicted that the biomasses of alpine meadow and alpine steppe remained roughly the same if annual precipitation increased by 8 mm per decade-1,but the biomasses were decreased by 2.7% and 2.4%,respectively if precipitation was constant.For a 2.2°C decade-1 rise in air temperature coupled with a 12 mm decade-1 rise in precipitation,the model predicted that the biomass of alpine meadow was unchanged or slightly increased,while that of alpine steppe was increased by 5.2%.However,in the absence of any rise in precipitation,the model predicted 6.8% and 4.6% declines in alpine meadow and alpine steppe biomasses,respectively.The response of alpine steppe biomass to the rising air temperatures and precipitation was significantly lesser and greater,respectively than that of alpine meadow biomass.A better understanding of the difference in alpine ecosystem biomass production under climate change is greatly significant with respect to the influence of climate change on the carbon and water cycles in the permafrost regions of the Qinghai-Tibet Plateau.展开更多
Due to their particular physiology and life history traits, bryophytes are critical in regulating biogeochemical cycles and functions in alpine ecosystem. Hence, it is crucial to investigate their nutrient utilization...Due to their particular physiology and life history traits, bryophytes are critical in regulating biogeochemical cycles and functions in alpine ecosystem. Hence, it is crucial to investigate their nutrient utilization strategies in comparison with vascular plants and understand their responses to the variation of growing season caused by climate change. Firstly, this study testified whether or not bryophytes can absorb nitrogen(N) directly from soil through spiking three chemical forms of 15N stable isotope tracer. Secondly, with stronger ability of carbohydrates assimilation and photosynthesis, it is supposed that N utilization efficiency of vascular plants is significantly higher than that of bryophytes. However, the recovery of soil N by bryophytes can still compete with vascular plants due to their greater phytomass. Thirdly, resource acquisition may be varied from the change of growing season, during which N pulse can be manipulated with 15N tracer addition at different time. Both of bryophytes and vascular plants contain more N in a longer growing season, and prefer inorganic over organic N. Bryophytes assimilate more NH4+ than NO3– and amino acid, which can be indicated from the greater shoot excess 15N of bryophytes. However, vascular plants prefer to absorb NO3– for their developed root systems and vascular tissue. Concerning the uptake of three forms N by bryophytes, there is significant difference between two manipulated lengths of growing season. Furthermore, the capacity of bryophytes to tolerate N-pollution may be lower than currently appreciated, which indicates the effect of climate change on asynchronous variation of soil N pools with plant requirements.展开更多
The ecological concept of Plant Functional Types(PFTs), which refers to the assemblage of plants with certain functional traits, has been introduced for the study of plant responses to the environment change and hum...The ecological concept of Plant Functional Types(PFTs), which refers to the assemblage of plants with certain functional traits, has been introduced for the study of plant responses to the environment change and human disturbance. Taking the alpine meadow community in the Zoigê Plateau as a study case, this paper classified PFTs in terms of plant nutrition traits. The sequential results are as follows.(1) The main herbages in the Zoigê Plateau included 16 species in 5 families. Among the five families, Cyperaceae vegetation accounted for 81.37%of herbage area in total, while the remaining 4families occupied less than 20%. As for the species,Kobresia setchwanensis Hand.-Maizz. was dominant,accounting for 48.74% of the total area; while the remaining 51.26% was comprised of Polygonum viviparum L., Anaphalis fiavescens Hand.-Mazz.,Stipa aliena Keng and other species.(2) By using the Principal Component Analysis(PCA), the assessment of herbages nutrition was carried out based on the comprehensive multi-index evaluation model.Polygonum viviparum L. had the highest nutritional value score(1.43), and Stipa aliena Keng had the lowest(-1.40). Nutritional value of herbage species had a significantly positive correlation with altitude(P<0.01) in the Zoigê Plateau.(3) Based on the nutritional values, herbages in the Zoigê Plateau could be grouped into 3 nutrition PFTs(high, medium and low) by using the Natural Breaks(Jenks) method.展开更多
Global climate change has been found to substantially influence the phenology of rangeland,especially on the Tibetan Plateau. However, there is considerable controversy about the trends and causes of rangeland phenolo...Global climate change has been found to substantially influence the phenology of rangeland,especially on the Tibetan Plateau. However, there is considerable controversy about the trends and causes of rangeland phenology owing to different phenological exploration methods and lack of ground validation. Little is known about the uncertainty in the exploration accuracy of vegetation phenology.Therefore, in this study, we selected a typical alpine rangeland near Damxung national meteorological station as a case study on central Tibetan Plateau, and identified several important sources influencing phenology to better understand their effects on phenological exploration. We found man-made land use was not easily distinguished from natural rangelands, and therefore this may confound phenological response to climate change in the rangeland. Change trends of phenology explored by four methods were similar, but ratio threshold method(RTM) was more suitable for exploring vegetation phenology in terms of the beginning of growing season(BGS) and end of growing season(EGS). However, some adjustments are needed when RTM is used in extreme drought years. MODIS NDVI/EVI dataset was most suitable for exploring vegetation phenology of BGS and EGS. The discrimination capacities of vegetation phenology declined with decreasing resolution of remote sensing images from MODIS to GIMMS AVHRR datasets. Additionally, distinct trends of phenological change rates were indicated in different terrain conditions, with advance of growing season in high altitudes but delay of season in lower altitudes. Therefore, it was necessary to eliminate interference of complex terrain and man-made land use to ensure the representativeness of natural vegetation. Moreover, selecting the appropriate method to explore rangelands and fully considering the impact of topography are important to accurately analyze the effects of climate change on vegetation phenology.展开更多
Enclosure is one of the most widely used management tools for degraded alpine grassland on the northern Tibetan Plateau, but the responses of different types of grassland to enclosure may vary, and research on these r...Enclosure is one of the most widely used management tools for degraded alpine grassland on the northern Tibetan Plateau, but the responses of different types of grassland to enclosure may vary, and research on these responses can provide a scientific basis for improving ecological conservation. This study took one site for each of three grassland types(alpine meadow, alpine steppe and alpine desert) on the northern Tibetan Plateau as examples, and explored the effects of enclosure on plant and soil nutrients by comparing differences in plant community biomass, leaf-soil nutrient content and their stoichiometry between samples from inside and outside the fence. The results showed that enclosure can significantly increase all aboveground biomass in these three grassland types, but it only increased the 10–20 cm underground biomass in the alpine desert. Enclosure also significantly increased the leaf nutrient content of the dominant plants and contents of total nitrogen(N), total potassium(K), and organic carbon(C) in 10–20 cm soil in alpine desert, thus changing the stoichiometry between C, N and P(phosphorus). However, enclosure significantly increased only the N content of dominant plant leaves in alpine steppe, while other nutrients and stoichiometries of both plant leaves and soil did not show significant differences in alpine meadow and alpine steppe. These results suggested that enclosure has differential effects on these three types of alpine grasslands on the northern Tibetan Plateau, and the alpine desert showed the most active ecological conservation in the responses of its soil and plant nutrients.展开更多
Our objectives are to examine the effects of hummock-depression spatial heterogeneity on plant communities and soil properties,and to understand the process of maintaining and adjusting microtopography-mediated hydrol...Our objectives are to examine the effects of hummock-depression spatial heterogeneity on plant communities and soil properties,and to understand the process of maintaining and adjusting microtopography-mediated hydrological inputs and their spatial fluctuations that produce obvious microhabitats.We set up 36 plots(1 m×1 m)and sampled 45 plant and 225 soil samples in flooded(FH)and non-flooded hummocks(NFH)and depressions of the marshy,and the surrounding non-wetland meadows as well as in the Yellow River Source Zone,west China.We evaluated whether the alpine marshy wetland has a fertile island effect by the comparison method.Our results show that hummock presence can increase the spatial heterogeneity of the microhabitat and promote the plant diversity and soil fertility of the Kobresia tibetica community.Plant height,coverage,above-ground biomass,species richness and diversity were significantly higher in the FH and NFH microhabitat than in the areas between hummocks and surrounding non-wetland meadows.Compared with broad alpine meadows,the hummock-depression complex provided a microhabitat favorable to the growth of Cyperaceae.In the 0-50 cm soil layer,the closer the soil layer was to the ground surface,the higher its soil organic carbon and total nitrogen contents.Thus,in deeper layers,the gap between soil nutrients in wetland hummock-depression microhabitat and in the surrounding alpine meadows becomes smaller.Hence,the wetland hummock-depression microhabitat formed a fertile island pattern.Therefore,these results contribute toward improving our understanding of ecosystem restoration in alpine marshy meadows.展开更多
We studied the uptake of ammonium, nitrate, and a variety of amino acids by alpine plant species in the Kobresia humil alpine meadow ecosystem in situ. We examined the extent of niche separation in uptake of N source ...We studied the uptake of ammonium, nitrate, and a variety of amino acids by alpine plant species in the Kobresia humil alpine meadow ecosystem in situ. We examined the extent of niche separation in uptake of N source by different plant species in alpine communities, and investigated the contribution of symbiotically fixed N to the total N in alpine meadow. The results are (1) δ15N natural abundance values of 13 plant species lie between -2.680‰ and 5.169‰, and the scope is 7.849‰. (2) Le- guminous plants, such as Trigonella ruthenica, Gueldenstaedtia diversiffolia, and Oxytyopis ochrocephala, and non-legumi- nous plant Gentiana straminea uptake low amounts of 15N labeled ammonium, nitrate, glycine or aspartate in soil. (3) As far as the plant uptake of organic N is concerned, Kobresia humilis, Poa pratensis, and Gentiuna spathutifolta can effectively uptake organic nitrogen, and about 37%-40% of the nitrogen of these species comes from soil organic nitrogen sources (such as glycine and aspartate). Stipa aliena can effectively uptake nitrate, and 60% of its nitrogen comes from soil nitrate. Potentilla anserina, Poa pratensis, and Thalictrum alpinum can effectively absorb ammonium in comparason to other plant species in the meadow, and about 25%-27% of the nitrogen in these plants comes from soil ammonium. (4) The contribution of leguminous fixed N to total N is 7.48%-9.26% in Kobresia humilis alpine meadow. (5) These data show many plant species of alpine meadow may effectively utilize dissolved organic nitrogen such as amino acids, and these plants have diverse ways to uptake soil nitrogen in alpine meadows. Based on the results we can partly explain why there are abundant biodiversities and how plants at alpine habitat utilize the limited soil N sources.展开更多
Land surface process modeling of high and cold area with vegetation cover has not yielded satisfactory results in previous applications. In this study, land surface energy budget is simulated using a land surface mode...Land surface process modeling of high and cold area with vegetation cover has not yielded satisfactory results in previous applications. In this study, land surface energy budget is simulated using a land surface model for the A'rou meadow in the upper-reach area of the Heihe River Basin in the eastern Tibetan Plateau. The model performance is evaluated using the in-situ observations and remotely sensed data. Sensible and soil heat fluxes are overestimated while latent heat flux is underestimated when the default parameter setting is used. By analyzing physical and physiological processes and the sensitivities of key parameters, the inappropriate default setting of optimum growth and inhibition temperatures is identified as an important reason for the bias. The average daytime temperature during the period of fastest vegetation growth(June and July) is adopted as the optimum growth temperature, and the inhibition temperatures were adjusted using the same increment as the optimum temperature based on the temperature acclimation. These adjustments significantly reduced the biases in sensible, latent, and soil heat fluxes.展开更多
文摘Using the measurement of stable carbon isotopes in leaves as a tool to investigate photosynthetic pathway of 102 plant species grown at an alpine meadow ecosystem, at the foot of the Qilian Mountain, Qinghai, China. The results indicate that the delta C-13 values of plants have a narrow range from -28.24parts per thousand to -24.84parts per thousand, which means that none of the species examined belongs to C-4 and crassulaceous acid metabolism (CAM) photosynthetic pathway and all of these species perform photosynthesis through the C-3 pathway. This is likely due to a long-term adaptation to environments at the alpine meadow ecosystem.
基金funded by the National Basic Research Program (also called 973 Program) (Grant No.2007CB411504)the National Natural Science Foundation of China (Grant No.40925002 and No.40730634)
文摘Alpine ecosystems in permafrost region are extremely sensitive to climate changes.To determine spatial pattern variations in alpine meadow and alpine steppe biomass dynamics in the permafrost region of the Qinghai-Tibet Plateau,China,calibrated with historical datasets of above-ground biomass production within the permafrost region's two main ecosystems,an ecosystem-biomass model was developed by employing empirical spatialdistribution models of the study region's precipitation,air temperature and soil temperature.This model was then successfully used to simulate the spatio-temporal variations in annual alpine ecosystem biomass production under climate change.For a 0.44°C decade-1 rise in air temperature,the model predicted that the biomasses of alpine meadow and alpine steppe remained roughly the same if annual precipitation increased by 8 mm per decade-1,but the biomasses were decreased by 2.7% and 2.4%,respectively if precipitation was constant.For a 2.2°C decade-1 rise in air temperature coupled with a 12 mm decade-1 rise in precipitation,the model predicted that the biomass of alpine meadow was unchanged or slightly increased,while that of alpine steppe was increased by 5.2%.However,in the absence of any rise in precipitation,the model predicted 6.8% and 4.6% declines in alpine meadow and alpine steppe biomasses,respectively.The response of alpine steppe biomass to the rising air temperatures and precipitation was significantly lesser and greater,respectively than that of alpine meadow biomass.A better understanding of the difference in alpine ecosystem biomass production under climate change is greatly significant with respect to the influence of climate change on the carbon and water cycles in the permafrost regions of the Qinghai-Tibet Plateau.
基金the National Natural Science Foundation Youth Project of China (Grant No.31100358)the "Strategic Priority Research Program-Climate Change:Carbon Budget and Related Issues" of the Chinese Academy of Sciences (Grant No. XDA05050307)+1 种基金Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period"Vegetation Stabilization Techniques of Alpine Forest-Grassland Ecotone" (Grant No. 2011BAC09 B04-02-03)International Science & Technology Cooperation Program of China (Grant No. 2013DFR90670) for fund support
文摘Due to their particular physiology and life history traits, bryophytes are critical in regulating biogeochemical cycles and functions in alpine ecosystem. Hence, it is crucial to investigate their nutrient utilization strategies in comparison with vascular plants and understand their responses to the variation of growing season caused by climate change. Firstly, this study testified whether or not bryophytes can absorb nitrogen(N) directly from soil through spiking three chemical forms of 15N stable isotope tracer. Secondly, with stronger ability of carbohydrates assimilation and photosynthesis, it is supposed that N utilization efficiency of vascular plants is significantly higher than that of bryophytes. However, the recovery of soil N by bryophytes can still compete with vascular plants due to their greater phytomass. Thirdly, resource acquisition may be varied from the change of growing season, during which N pulse can be manipulated with 15N tracer addition at different time. Both of bryophytes and vascular plants contain more N in a longer growing season, and prefer inorganic over organic N. Bryophytes assimilate more NH4+ than NO3– and amino acid, which can be indicated from the greater shoot excess 15N of bryophytes. However, vascular plants prefer to absorb NO3– for their developed root systems and vascular tissue. Concerning the uptake of three forms N by bryophytes, there is significant difference between two manipulated lengths of growing season. Furthermore, the capacity of bryophytes to tolerate N-pollution may be lower than currently appreciated, which indicates the effect of climate change on asynchronous variation of soil N pools with plant requirements.
基金supported by the sub topics of National Key Technology R&D Program (Grant No. 2015BAC05B05-01)
文摘The ecological concept of Plant Functional Types(PFTs), which refers to the assemblage of plants with certain functional traits, has been introduced for the study of plant responses to the environment change and human disturbance. Taking the alpine meadow community in the Zoigê Plateau as a study case, this paper classified PFTs in terms of plant nutrition traits. The sequential results are as follows.(1) The main herbages in the Zoigê Plateau included 16 species in 5 families. Among the five families, Cyperaceae vegetation accounted for 81.37%of herbage area in total, while the remaining 4families occupied less than 20%. As for the species,Kobresia setchwanensis Hand.-Maizz. was dominant,accounting for 48.74% of the total area; while the remaining 51.26% was comprised of Polygonum viviparum L., Anaphalis fiavescens Hand.-Mazz.,Stipa aliena Keng and other species.(2) By using the Principal Component Analysis(PCA), the assessment of herbages nutrition was carried out based on the comprehensive multi-index evaluation model.Polygonum viviparum L. had the highest nutritional value score(1.43), and Stipa aliena Keng had the lowest(-1.40). Nutritional value of herbage species had a significantly positive correlation with altitude(P<0.01) in the Zoigê Plateau.(3) Based on the nutritional values, herbages in the Zoigê Plateau could be grouped into 3 nutrition PFTs(high, medium and low) by using the Natural Breaks(Jenks) method.
基金supported by the National Natural Science Foundation of China (41271067)National key research and development program (2016YFC0502001)
文摘Global climate change has been found to substantially influence the phenology of rangeland,especially on the Tibetan Plateau. However, there is considerable controversy about the trends and causes of rangeland phenology owing to different phenological exploration methods and lack of ground validation. Little is known about the uncertainty in the exploration accuracy of vegetation phenology.Therefore, in this study, we selected a typical alpine rangeland near Damxung national meteorological station as a case study on central Tibetan Plateau, and identified several important sources influencing phenology to better understand their effects on phenological exploration. We found man-made land use was not easily distinguished from natural rangelands, and therefore this may confound phenological response to climate change in the rangeland. Change trends of phenology explored by four methods were similar, but ratio threshold method(RTM) was more suitable for exploring vegetation phenology in terms of the beginning of growing season(BGS) and end of growing season(EGS). However, some adjustments are needed when RTM is used in extreme drought years. MODIS NDVI/EVI dataset was most suitable for exploring vegetation phenology of BGS and EGS. The discrimination capacities of vegetation phenology declined with decreasing resolution of remote sensing images from MODIS to GIMMS AVHRR datasets. Additionally, distinct trends of phenological change rates were indicated in different terrain conditions, with advance of growing season in high altitudes but delay of season in lower altitudes. Therefore, it was necessary to eliminate interference of complex terrain and man-made land use to ensure the representativeness of natural vegetation. Moreover, selecting the appropriate method to explore rangelands and fully considering the impact of topography are important to accurately analyze the effects of climate change on vegetation phenology.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences(XDA19050502,XDA20010201)The National Key Research Projects of China(2017YFA0604801,2016YFC0502001)The National Natural Science Foundation of China(31770477)。
文摘Enclosure is one of the most widely used management tools for degraded alpine grassland on the northern Tibetan Plateau, but the responses of different types of grassland to enclosure may vary, and research on these responses can provide a scientific basis for improving ecological conservation. This study took one site for each of three grassland types(alpine meadow, alpine steppe and alpine desert) on the northern Tibetan Plateau as examples, and explored the effects of enclosure on plant and soil nutrients by comparing differences in plant community biomass, leaf-soil nutrient content and their stoichiometry between samples from inside and outside the fence. The results showed that enclosure can significantly increase all aboveground biomass in these three grassland types, but it only increased the 10–20 cm underground biomass in the alpine desert. Enclosure also significantly increased the leaf nutrient content of the dominant plants and contents of total nitrogen(N), total potassium(K), and organic carbon(C) in 10–20 cm soil in alpine desert, thus changing the stoichiometry between C, N and P(phosphorus). However, enclosure significantly increased only the N content of dominant plant leaves in alpine steppe, while other nutrients and stoichiometries of both plant leaves and soil did not show significant differences in alpine meadow and alpine steppe. These results suggested that enclosure has differential effects on these three types of alpine grasslands on the northern Tibetan Plateau, and the alpine desert showed the most active ecological conservation in the responses of its soil and plant nutrients.
基金Thank the members of the research team for their kind support in the experiment,and thank the Science and Technology Department of Qinghai Provincial for the funding of the application basic project(2019-ZJ-7035)Discipline Innovation and Introducing Talents Program of Higher Education Institutions(the 111 Project,D18013)Changjiang Scholars and Innovation Team Development plan(IRT_17R62).
文摘Our objectives are to examine the effects of hummock-depression spatial heterogeneity on plant communities and soil properties,and to understand the process of maintaining and adjusting microtopography-mediated hydrological inputs and their spatial fluctuations that produce obvious microhabitats.We set up 36 plots(1 m×1 m)and sampled 45 plant and 225 soil samples in flooded(FH)and non-flooded hummocks(NFH)and depressions of the marshy,and the surrounding non-wetland meadows as well as in the Yellow River Source Zone,west China.We evaluated whether the alpine marshy wetland has a fertile island effect by the comparison method.Our results show that hummock presence can increase the spatial heterogeneity of the microhabitat and promote the plant diversity and soil fertility of the Kobresia tibetica community.Plant height,coverage,above-ground biomass,species richness and diversity were significantly higher in the FH and NFH microhabitat than in the areas between hummocks and surrounding non-wetland meadows.Compared with broad alpine meadows,the hummock-depression complex provided a microhabitat favorable to the growth of Cyperaceae.In the 0-50 cm soil layer,the closer the soil layer was to the ground surface,the higher its soil organic carbon and total nitrogen contents.Thus,in deeper layers,the gap between soil nutrients in wetland hummock-depression microhabitat and in the surrounding alpine meadows becomes smaller.Hence,the wetland hummock-depression microhabitat formed a fertile island pattern.Therefore,these results contribute toward improving our understanding of ecosystem restoration in alpine marshy meadows.
基金supported by National Natural Science Foundation of China(Grant Nos.30660120 and 41030105)National Basic Research Program of China (Grant No. 2009CB421102)International Cooperation Program of Science and Technology Department of Qinghai Province (Grant No. 2010-H-809)
文摘We studied the uptake of ammonium, nitrate, and a variety of amino acids by alpine plant species in the Kobresia humil alpine meadow ecosystem in situ. We examined the extent of niche separation in uptake of N source by different plant species in alpine communities, and investigated the contribution of symbiotically fixed N to the total N in alpine meadow. The results are (1) δ15N natural abundance values of 13 plant species lie between -2.680‰ and 5.169‰, and the scope is 7.849‰. (2) Le- guminous plants, such as Trigonella ruthenica, Gueldenstaedtia diversiffolia, and Oxytyopis ochrocephala, and non-legumi- nous plant Gentiana straminea uptake low amounts of 15N labeled ammonium, nitrate, glycine or aspartate in soil. (3) As far as the plant uptake of organic N is concerned, Kobresia humilis, Poa pratensis, and Gentiuna spathutifolta can effectively uptake organic nitrogen, and about 37%-40% of the nitrogen of these species comes from soil organic nitrogen sources (such as glycine and aspartate). Stipa aliena can effectively uptake nitrate, and 60% of its nitrogen comes from soil nitrate. Potentilla anserina, Poa pratensis, and Thalictrum alpinum can effectively absorb ammonium in comparason to other plant species in the meadow, and about 25%-27% of the nitrogen in these plants comes from soil ammonium. (4) The contribution of leguminous fixed N to total N is 7.48%-9.26% in Kobresia humilis alpine meadow. (5) These data show many plant species of alpine meadow may effectively utilize dissolved organic nitrogen such as amino acids, and these plants have diverse ways to uptake soil nitrogen in alpine meadows. Based on the results we can partly explain why there are abundant biodiversities and how plants at alpine habitat utilize the limited soil N sources.
基金supported by the National Natural Science Foundation of China(Grant Nos.91125002,40971221)FP7 CEOP-AEGI(Coordinated Asia European Long-Term Observing System of the Qinhai Tibet Plateau Hydro-meteorological Processes and the Asian Monsoon System with Ground Satellite Image data and numerical simulation)project
文摘Land surface process modeling of high and cold area with vegetation cover has not yielded satisfactory results in previous applications. In this study, land surface energy budget is simulated using a land surface model for the A'rou meadow in the upper-reach area of the Heihe River Basin in the eastern Tibetan Plateau. The model performance is evaluated using the in-situ observations and remotely sensed data. Sensible and soil heat fluxes are overestimated while latent heat flux is underestimated when the default parameter setting is used. By analyzing physical and physiological processes and the sensitivities of key parameters, the inappropriate default setting of optimum growth and inhibition temperatures is identified as an important reason for the bias. The average daytime temperature during the period of fastest vegetation growth(June and July) is adopted as the optimum growth temperature, and the inhibition temperatures were adjusted using the same increment as the optimum temperature based on the temperature acclimation. These adjustments significantly reduced the biases in sensible, latent, and soil heat fluxes.