A conduction heat transfer process is enhanced by filling prescribed quantity and optimized-shaped high thermal conductivity materials to the substrate. Numerical simulations and analyses are performed on a volume to ...A conduction heat transfer process is enhanced by filling prescribed quantity and optimized-shaped high thermal conductivity materials to the substrate. Numerical simulations and analyses are performed on a volume to point conduction problem based on the principle of minimum entropy generation. In the optimization, the arrangement of high thermal conductivity materials is variable, the quantity of high thermal-conductivity material is constrained, and the objective is to obtain the maximum heat conduction rate as the entropy is the minimum.A novel algorithm of thermal conductivity discretization is proposed based on large quantity of calculations.Compared with other algorithms in literature, the average temperature in the substrate by the new algorithm is lower, while the highest temperature in the substrate is in a reasonable range. Thus the new algorithm is feasible. The optimization of volume to point heat conduction is carried out in a rectangular model with radiation boundary condition and constant surface temperature boundary condition. The results demonstrate that the algorithm of thermal conductivity discretization is applicable for volume to point heat conduction problems.展开更多
An enhanced thermal conductivity UO2-BeO composite nuclear fuel was studied. A methodology to generate ANSYS (an engineering simulation software) FEM (finite element method) thermal models of enhanced thermal cond...An enhanced thermal conductivity UO2-BeO composite nuclear fuel was studied. A methodology to generate ANSYS (an engineering simulation software) FEM (finite element method) thermal models of enhanced thermal conductivity oxide nuclear fuels was developed. The results showed significant increase in the fuel thermal conductivities and have good agreement with the measured ones. Thus BeO is one of the promising candidates for fabricating two-phase high thermal conductivity ceramic nuclear fuels with UO2. The reactor performance analysis showed that the decrease in centerline temperature was 250-350 K depending on different fabrication methods for the UO2-BeO composite fuel, and thus we can improve nuclear reactors' performance and safety, and high-level radioactive waste generation for the existing and next generation nuclear reactors.展开更多
获2021日本优良设计奖"Good Design BEST 100"荣誉的这款电胶枪由小米生态链企业HOTO小猴工具设计出品。整机净重仅195克,轻快简洁,造型简单,操作方便,一键即可启动。电胶枪前置高导热率黄铜出胶嘴,可快速融化胶棒,释放胶水...获2021日本优良设计奖"Good Design BEST 100"荣誉的这款电胶枪由小米生态链企业HOTO小猴工具设计出品。整机净重仅195克,轻快简洁,造型简单,操作方便,一键即可启动。电胶枪前置高导热率黄铜出胶嘴,可快速融化胶棒,释放胶水。内置MCH金属陶瓷发热片,加热均匀,出胶稳定连贯。展开更多
The thermodynamics properties and thermal conductivity of Mg2Pb at high pressures have been calculated by first-principles.The enthalpy of formation and heat capacity obtained at 0 GPa are in good agreement with the e...The thermodynamics properties and thermal conductivity of Mg2Pb at high pressures have been calculated by first-principles.The enthalpy of formation and heat capacity obtained at 0 GPa are in good agreement with the experiments and other theoretical results.The thermal conductivity and coefficient of thermal expansion of Mg2 Pb at high pressure were evaluated.The thermal conductivity presents a second-order polynomial with pressure.The calculated thermal conductivity of Mg2Pb indicates that it is suitable to be used as thermal conductor at 0 K.展开更多
Sintering inhibition of a catalyst at high temperatures is a challenge during heterogeneous catalysis. In this paper, we report that hexagonal boron nitride(h-BN) is an optimal material for anti-sintering γ-Al_(2)O_(...Sintering inhibition of a catalyst at high temperatures is a challenge during heterogeneous catalysis. In this paper, we report that hexagonal boron nitride(h-BN) is an optimal material for anti-sintering γ-Al_(2)O_(3)-supported Pt nanoparticles(NPs) originating from the high thermal conductivity of h-BN. The high thermal conductivity of h-BN ensures maximal heat dissipation from Pt NPs to γ-Al_(2)O_(3),thereby causing both Ostwald ripening and particle coalescence of Pt NPs to be decelerated at elevated temperatures.Inhibition of Pt NP sintering is also shown in the reducible TiO^(2-)supported Pt NPs with the help of h-BN. The proposed anti-sintering strategy using thermal management is universal, providing new insight into the design of anti-sintering materials and structures for a wide range of applications in heterogeneous catalysis.展开更多
基金Supported by the National Key Basic Research Program of China(2013CB228305)
文摘A conduction heat transfer process is enhanced by filling prescribed quantity and optimized-shaped high thermal conductivity materials to the substrate. Numerical simulations and analyses are performed on a volume to point conduction problem based on the principle of minimum entropy generation. In the optimization, the arrangement of high thermal conductivity materials is variable, the quantity of high thermal-conductivity material is constrained, and the objective is to obtain the maximum heat conduction rate as the entropy is the minimum.A novel algorithm of thermal conductivity discretization is proposed based on large quantity of calculations.Compared with other algorithms in literature, the average temperature in the substrate by the new algorithm is lower, while the highest temperature in the substrate is in a reasonable range. Thus the new algorithm is feasible. The optimization of volume to point heat conduction is carried out in a rectangular model with radiation boundary condition and constant surface temperature boundary condition. The results demonstrate that the algorithm of thermal conductivity discretization is applicable for volume to point heat conduction problems.
文摘An enhanced thermal conductivity UO2-BeO composite nuclear fuel was studied. A methodology to generate ANSYS (an engineering simulation software) FEM (finite element method) thermal models of enhanced thermal conductivity oxide nuclear fuels was developed. The results showed significant increase in the fuel thermal conductivities and have good agreement with the measured ones. Thus BeO is one of the promising candidates for fabricating two-phase high thermal conductivity ceramic nuclear fuels with UO2. The reactor performance analysis showed that the decrease in centerline temperature was 250-350 K depending on different fabrication methods for the UO2-BeO composite fuel, and thus we can improve nuclear reactors' performance and safety, and high-level radioactive waste generation for the existing and next generation nuclear reactors.
基金supported by the National Natural Science Foundation of China(Grant No.51201079)the Scientific Research Foundation for Introduced Talents of KMUST(Grant No.KKSY201251033)the Scientific Research Fund of Department of Education of Yunnan Province(Grant No.2012Z099)
文摘The thermodynamics properties and thermal conductivity of Mg2Pb at high pressures have been calculated by first-principles.The enthalpy of formation and heat capacity obtained at 0 GPa are in good agreement with the experiments and other theoretical results.The thermal conductivity and coefficient of thermal expansion of Mg2 Pb at high pressure were evaluated.The thermal conductivity presents a second-order polynomial with pressure.The calculated thermal conductivity of Mg2Pb indicates that it is suitable to be used as thermal conductor at 0 K.
基金supported by the National Natural Science Foundation of China (21961132026,51888103,21878331,51606192,91645108 and U1162117)the Nanotechnology Specific Project of the National Key Research and Development Program (2020YFA0210900)+1 种基金the CAS Pioneer Hundred Talents Programthe Science Foundation of China University of Petroleum,Beijing (C201604)。
文摘Sintering inhibition of a catalyst at high temperatures is a challenge during heterogeneous catalysis. In this paper, we report that hexagonal boron nitride(h-BN) is an optimal material for anti-sintering γ-Al_(2)O_(3)-supported Pt nanoparticles(NPs) originating from the high thermal conductivity of h-BN. The high thermal conductivity of h-BN ensures maximal heat dissipation from Pt NPs to γ-Al_(2)O_(3),thereby causing both Ostwald ripening and particle coalescence of Pt NPs to be decelerated at elevated temperatures.Inhibition of Pt NP sintering is also shown in the reducible TiO^(2-)supported Pt NPs with the help of h-BN. The proposed anti-sintering strategy using thermal management is universal, providing new insight into the design of anti-sintering materials and structures for a wide range of applications in heterogeneous catalysis.