The main concern of this paper is to provide an extensive study for the structural behavior of low/medium/high rise office buildings aiming to deepen structure and architect designers understanding for such type of bu...The main concern of this paper is to provide an extensive study for the structural behavior of low/medium/high rise office buildings aiming to deepen structure and architect designers understanding for such type of buildings. The study is performed on reinforced concrete and emphasized only on Kuwait city conditions for wind. Regular layout plan building with different heights ranging from five to fifty typical office stories are investigated in this study. Three dimensional finite element techniques through ETABS software are used in conducting analysis for structures presented here-in. A serviceability study is performed to ensure that buildings have sufficient stability to limit lateral drift and peak acceleration within the acceptable range of occupancy comfort. In addition, an ultimate strength study is carried out to design and verify that all the structural elements are designed to withstand factored gravity and lateral loadings in a safe manner according to the international building codes. The building slenderness ratio and the building core size and location are the studied parameters since they are the key drivers for the efficient structural design. Analysis results are presented and discussed and finally conclusions are summarized as guidelines for designers of concrete office buildings in Kuwait.展开更多
Low-rise apartments for low-income residents have been built in Surabaya in recent years. They have four stories and many rooms, and the dwellers are all small traders. Because these projects are built with funds from...Low-rise apartments for low-income residents have been built in Surabaya in recent years. They have four stories and many rooms, and the dwellers are all small traders. Because these projects are built with funds from the government, the buildings are designed to consider the cost of construction, without consideration of embodied energy material. As a result, the buildings are not optimal in terms of embodied energy and construction cost. At present, because there are both concerns over global warning and a worldwide energy crisis, the embodied energy in a building is a very important concept for building design, because it can determine usage of energy in relation to natural sources, especially fossil fuels. This is part of the sustainable design concept. This paper describes research regarding: differences in embodied energy and construction cost between different wall materials, including brick, corn block and lightweight concrete in low rise apartments; the optimal relationship between embodied energy and building cost; and which factors determine these differences. The findings of this research show that lightweight concrete is the best material for the building walls; apartments for low-income in Surabaya still do not represent optimal construction design; and that sustainable buildings are cheaper than those that do not use this concept.展开更多
Wind barriers are commonly adopted to prevent the effects of wind on high-speed railway trains,but their wind-proofing effects are greatly affected by substructures.To investigate the effects of wind barriers on the a...Wind barriers are commonly adopted to prevent the effects of wind on high-speed railway trains,but their wind-proofing effects are greatly affected by substructures.To investigate the effects of wind barriers on the aerodynamic characteristic of road-rail same-story truss bridge-train systems,wind tunnel experiments were carried out using a 1:50 scale model.Taking a wind barrier with a porosity of 30%as an example,the aerodynamic characteristics of the bridge train system under different wind barrier layouts(single-sided and double-sided),positions(inside and outside)and heights(2.5 m,3.0 m,3.5 m and 4.0 m)were tested.The results indicate that the downstream inside wind barrier has almost no effect on the aerodynamic characteristics of the train-bridge system,but the downstream outside wind barrier increases the drag coefficient of the bridge and reduces both the lift coefficient and drag coefficient of the train due to its effect on the trains wind pressure distribution,especially on the trains leeward surface.When the wind barriers are arranged on the outside,their effects on the drag coefficient of the bridge and shielding effect on the train are greater than when they are arranged on the inside.As the height of the wind barrier increases,the drag coefficient of the bridge also gradually increases,and the lift coefficient and drag coefficient of the train gradually decrease,but the degree of variation of the aerodynamic coefficient with the height is slightly different due to the different wind barrier layouts.When 3.0 m high double-sided wind barriers are arranged on the outside of the truss bridge,the drag coefficient of the bridge only increases by 12%,while the drag coefficient of the train decreases by 55%.展开更多
A trend increase in apparent resistivity has been observed in the N30°E monitoring direction at Garze Seismic Station since July 2011. This increase trend in geo-electric resistivity has been observed in the N60&...A trend increase in apparent resistivity has been observed in the N30°E monitoring direction at Garze Seismic Station since July 2011. This increase trend in geo-electric resistivity has been observed in the N60°W direction since 2012. During the period of the increase, the national highway No.317 was expanded in the monitoring area, so the potential electrodes in the N30°E direction had to be moved 10m towards the current electrodes. We interpreted the electric sounding data of Garz6 Seismic Station with a horizontally layered model. Analysis based on this model showed that the shift of potential electrodes can cause a 4 l-l.m rise to the measurements in the N30°E direction. Therefore, apparent resistivity of the two directions increased in the same time in 2012 after offsetting the effects from electrodes shift. Sensitivity coefficients of the two observation directions were also obtained using the model. Sensitivity coefficients of both directions were negative for the shallow layers, which can well explain the unexpected annual variations of Garze Seismic Station. In order to quantitatively analyze the effects from the expansion of the national highway on the observation, we constructed a finite element model based on the electrical structure. Analysis results also suggested that the expansion of the national highway could only cause a 0. 15 Ω·m decrease in the N60°W monitoring direction and 0. 1 Ω· m increase in the N30°E direction. Additionally, the valley values of annual variation of 2013 were distinctively higher than that of other years since 2008, meaning that there was an abnormal rise in apparent resistivity in the two observation directions at Garz~ Seismic Station before the Lushan earthquake. However, the rise was contrary to the decline variation before the Wenchuan earthquake. Therefore, it is still unsure whether or not the rise variation is related to the Lushan earthquake.展开更多
A methodology for the evaluation of the economic impact of overweight permitted vehicles hauling agricultural products on state highways is presented in this study. The different gross vehicle weight scenarios that ar...A methodology for the evaluation of the economic impact of overweight permitted vehicles hauling agricultural products on state highways is presented in this study. The different gross vehicle weight scenarios that are selected for this investigation range between 80,000 lb. and 100,000 lb. Uniform distribution of axle loads and lumped loads are considered in this study. This study evaluates the proposed higher truck loads and their economic impact to the highways and to the industry. The effects of adapting higher truck loads on the existing highways are evaluated using a deterministic load capacity evaluation as well as a reliability assessment. The target reliability level is derived from AASHTO (American Association of State Highway and Transportation Officials) standard design specifications to satisfy safe and adequate performance level. The overlay thickness required to carry traffic from each gross vehicle weight scenario for the overlay design period is determined. Differences in overlay life were calculated for different gross vehicle weight scenarios with uniform and lumped axle loads. The overlay thickness and costs were determined for a twenty year analysis period using statistical methods. The result showed that lumped loads with allowable axle load of 48,000 lb. produce more pavement damage than the current permitted gross vehicle weight for timber trucks with equally loaded axles.展开更多
文摘The main concern of this paper is to provide an extensive study for the structural behavior of low/medium/high rise office buildings aiming to deepen structure and architect designers understanding for such type of buildings. The study is performed on reinforced concrete and emphasized only on Kuwait city conditions for wind. Regular layout plan building with different heights ranging from five to fifty typical office stories are investigated in this study. Three dimensional finite element techniques through ETABS software are used in conducting analysis for structures presented here-in. A serviceability study is performed to ensure that buildings have sufficient stability to limit lateral drift and peak acceleration within the acceptable range of occupancy comfort. In addition, an ultimate strength study is carried out to design and verify that all the structural elements are designed to withstand factored gravity and lateral loadings in a safe manner according to the international building codes. The building slenderness ratio and the building core size and location are the studied parameters since they are the key drivers for the efficient structural design. Analysis results are presented and discussed and finally conclusions are summarized as guidelines for designers of concrete office buildings in Kuwait.
文摘Low-rise apartments for low-income residents have been built in Surabaya in recent years. They have four stories and many rooms, and the dwellers are all small traders. Because these projects are built with funds from the government, the buildings are designed to consider the cost of construction, without consideration of embodied energy material. As a result, the buildings are not optimal in terms of embodied energy and construction cost. At present, because there are both concerns over global warning and a worldwide energy crisis, the embodied energy in a building is a very important concept for building design, because it can determine usage of energy in relation to natural sources, especially fossil fuels. This is part of the sustainable design concept. This paper describes research regarding: differences in embodied energy and construction cost between different wall materials, including brick, corn block and lightweight concrete in low rise apartments; the optimal relationship between embodied energy and building cost; and which factors determine these differences. The findings of this research show that lightweight concrete is the best material for the building walls; apartments for low-income in Surabaya still do not represent optimal construction design; and that sustainable buildings are cheaper than those that do not use this concept.
基金Projects(52078504,51822803,51925808) supported by the National Natural Science Foundation of ChinaProject(2021RC3016) supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘Wind barriers are commonly adopted to prevent the effects of wind on high-speed railway trains,but their wind-proofing effects are greatly affected by substructures.To investigate the effects of wind barriers on the aerodynamic characteristic of road-rail same-story truss bridge-train systems,wind tunnel experiments were carried out using a 1:50 scale model.Taking a wind barrier with a porosity of 30%as an example,the aerodynamic characteristics of the bridge train system under different wind barrier layouts(single-sided and double-sided),positions(inside and outside)and heights(2.5 m,3.0 m,3.5 m and 4.0 m)were tested.The results indicate that the downstream inside wind barrier has almost no effect on the aerodynamic characteristics of the train-bridge system,but the downstream outside wind barrier increases the drag coefficient of the bridge and reduces both the lift coefficient and drag coefficient of the train due to its effect on the trains wind pressure distribution,especially on the trains leeward surface.When the wind barriers are arranged on the outside,their effects on the drag coefficient of the bridge and shielding effect on the train are greater than when they are arranged on the inside.As the height of the wind barrier increases,the drag coefficient of the bridge also gradually increases,and the lift coefficient and drag coefficient of the train gradually decrease,but the degree of variation of the aerodynamic coefficient with the height is slightly different due to the different wind barrier layouts.When 3.0 m high double-sided wind barriers are arranged on the outside of the truss bridge,the drag coefficient of the bridge only increases by 12%,while the drag coefficient of the train decreases by 55%.
基金supported by the National Science and Technology Support Program(2012BAK19B02-03)Natural Science Foundation of China(41204057)
文摘A trend increase in apparent resistivity has been observed in the N30°E monitoring direction at Garze Seismic Station since July 2011. This increase trend in geo-electric resistivity has been observed in the N60°W direction since 2012. During the period of the increase, the national highway No.317 was expanded in the monitoring area, so the potential electrodes in the N30°E direction had to be moved 10m towards the current electrodes. We interpreted the electric sounding data of Garz6 Seismic Station with a horizontally layered model. Analysis based on this model showed that the shift of potential electrodes can cause a 4 l-l.m rise to the measurements in the N30°E direction. Therefore, apparent resistivity of the two directions increased in the same time in 2012 after offsetting the effects from electrodes shift. Sensitivity coefficients of the two observation directions were also obtained using the model. Sensitivity coefficients of both directions were negative for the shallow layers, which can well explain the unexpected annual variations of Garze Seismic Station. In order to quantitatively analyze the effects from the expansion of the national highway on the observation, we constructed a finite element model based on the electrical structure. Analysis results also suggested that the expansion of the national highway could only cause a 0. 15 Ω·m decrease in the N60°W monitoring direction and 0. 1 Ω· m increase in the N30°E direction. Additionally, the valley values of annual variation of 2013 were distinctively higher than that of other years since 2008, meaning that there was an abnormal rise in apparent resistivity in the two observation directions at Garz~ Seismic Station before the Lushan earthquake. However, the rise was contrary to the decline variation before the Wenchuan earthquake. Therefore, it is still unsure whether or not the rise variation is related to the Lushan earthquake.
文摘A methodology for the evaluation of the economic impact of overweight permitted vehicles hauling agricultural products on state highways is presented in this study. The different gross vehicle weight scenarios that are selected for this investigation range between 80,000 lb. and 100,000 lb. Uniform distribution of axle loads and lumped loads are considered in this study. This study evaluates the proposed higher truck loads and their economic impact to the highways and to the industry. The effects of adapting higher truck loads on the existing highways are evaluated using a deterministic load capacity evaluation as well as a reliability assessment. The target reliability level is derived from AASHTO (American Association of State Highway and Transportation Officials) standard design specifications to satisfy safe and adequate performance level. The overlay thickness required to carry traffic from each gross vehicle weight scenario for the overlay design period is determined. Differences in overlay life were calculated for different gross vehicle weight scenarios with uniform and lumped axle loads. The overlay thickness and costs were determined for a twenty year analysis period using statistical methods. The result showed that lumped loads with allowable axle load of 48,000 lb. produce more pavement damage than the current permitted gross vehicle weight for timber trucks with equally loaded axles.