This paper presents a new method to estimate the height of the atmospheric boundary layer(ABL) by using COSMIC radio occultation bending angle(BA) data. Using the numerical differentiation method combined with the reg...This paper presents a new method to estimate the height of the atmospheric boundary layer(ABL) by using COSMIC radio occultation bending angle(BA) data. Using the numerical differentiation method combined with the regularization technique, the first derivative of BA profiles is retrieved, and the height at which the first derivative of BA has the global minimum is defined to be the ABL height. To reflect the reliability of estimated ABL heights, the sharpness parameter is introduced, according to the relative minimum of the BA derivative. Then, it is applied to four months of COSMIC BA data(January, April, July, and October in 2008), and the ABL heights estimated are compared with two kinds of ABL heights from COSMIC products and with the heights determined by the finite difference method upon the refractivity data. For sharp ABL tops(large sharpness parameters), there is little difference between the ABL heights determined by different methods, i.e.,the uncertainties are small; whereas, for non-sharp ABL tops(small sharpness parameters), big differences exist in the ABL heights obtained by different methods, which means large uncertainties for different methods. In addition, the new method can detect thin ABLs and provide a reference ABL height in the cases eliminated by other methods. Thus, the application of the numerical differentiation method combined with the regularization technique to COSMIC BA data is an appropriate choice and has further application value.展开更多
The global planetary boundary layer height(PBLH)estimated from 11 years(2007–17)of Integrated Global Radiosonde Archive(IGRA)data,Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)soundings...The global planetary boundary layer height(PBLH)estimated from 11 years(2007–17)of Integrated Global Radiosonde Archive(IGRA)data,Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)soundings,and European Center for Medium-Range Weather Forecasts(ECMWF)interim reanalysis(ERAInterim)data,are compared in this study.In general,the spatial distribution of global PBLH derived from ERAInterim is consistent with the one from IGRA,both at 1200 UTC and 0000 UTC.High PBLH occurs at noon local time,because of strong radiation energy and convective activity.There are larger differences between the results of COSMIC and the other two datasets.PBLHs derived from COSMIC are much higher than those from radiosonde and reanalysis data.However,PBLHs derived from the three datasets all exhibit higher values in the low latitudes and lower ones in the high latitudes.The latitudinal difference between IGRA and COSMIC ranges from−1700 m to−500 m,while it ranges from−500 m to 250 m for IGRA and ERA-Interim.It is found that the differences among the three datasets are larger in winter and smaller in summer for most studied latitudes.展开更多
Disaster weather forecasting is becoming increasingly important. In this paper, the trajectories of Mesoscale Convective Systems (MCSs) were automatically tracked over the Chinese Tibetan Plateau using Geostationary...Disaster weather forecasting is becoming increasingly important. In this paper, the trajectories of Mesoscale Convective Systems (MCSs) were automatically tracked over the Chinese Tibetan Plateau using Geostationary Meteorological Satellite (GMS) brightness temperature (Tbb) from June to August 1998, and the MCSs are classified according to their movement direction. Based on these, spatial data mining methods are used to study the relationships between MCSs trajectories and their environmental physical field values. Results indicate that at 400hPa level, the trajectories of MCSs moving across the 105°E boundary are less influenced by water vapor flux divergence, vertical wind velocity, reIative humidity and K index. In addition, if the gravity central longitude locations of MCSs are between 104°E and 105°E, then geopotential height and wind divergence are two main factors in movement causation. On the other hand, at 500hPa level, the trajectories of MCSs in a north-east direction are mainly influenced by K index and water vapor flux divergence when their central locations are less than 104°E. However, the MCSs moving in an east and south-east direction are influenced by a few correlation factors at this level.展开更多
The multifractality of energy and thermal dissipation of fully developed intermittent turbulence is investigated in the urban canopy layer under unstable conditions by the singularity spectrum for the fractal dimensio...The multifractality of energy and thermal dissipation of fully developed intermittent turbulence is investigated in the urban canopy layer under unstable conditions by the singularity spectrum for the fractal dimensions of sets of singularities characterizing multifractals. In order to obtain high-order moment properties of smallscale turbulent dissipation in the inertial range, an ultrasonic anemometer with a high sampling frequency of 100 Hz was used. The authors found that the turbulent signal could be singular everywhere. Moreover, the singular exponents of energy and thermal dissipation rates are most frequently encountered at around 0.2, which is significantly smaller than the singular exponents for a wind tunnel at a moderate Reynolds number. The evidence indicates a higher intermittency of turbulence in the urban canopy layer at a high Reynolds number, which is demonstrated by the data with high temporal resolution. Furthermore, the temperature field is more intermittent than the velocity field. In addition, a large amount of samples could be used for verification of the results.展开更多
In a rectangular fluidized bed combustor, the tracer gas is injected continuously into the bed from a point source at the center of the distributor plate. In this study, a general governing equation is formulated for ...In a rectangular fluidized bed combustor, the tracer gas is injected continuously into the bed from a point source at the center of the distributor plate. In this study, a general governing equation is formulated for tracer gas dispersion in the bed. An analytical solution is derived to estimate the dispersion coefficients, Dxand Dy, in a horizontal plane. The concentration profiles at different sampling heights with various gas velocities are plotted.Subsequently, to estimate the dispersion coefficients, surface fitting of the obtained analytical solution to the experimental data is performed. The dispersion coefficients obtained from this model are compared with those of a conventional model. Additionally, the effect of walls, bed height and gas injection rate on the dispersion coefficients in a horizontal plane is investigated, and the effect of distributor design on the dispersion coefficients in a horizontal plane is investigated with different tracer positions. It is found that Dxand Dyare nearly equivalent at a lower tracer gas ratio of the injected gas to the total gas flow rate. It is also demonstrated that the effect of bed height on Dxis minor. This model is also able to estimate the dispersion coefficients in the case of a multihorizontal nozzle distributor.展开更多
We investigate the influence of low-frequency Rossby waves on the thermal structure of the upper southwestern tropical Indian Ocean (SWTIO) using Argo profiles, satellite altimetric data, sea surface temperature, wind...We investigate the influence of low-frequency Rossby waves on the thermal structure of the upper southwestern tropical Indian Ocean (SWTIO) using Argo profiles, satellite altimetric data, sea surface temperature, wind field data and the theory of linear vertical normal mode decomposition. Our results show that the SWTIO is generally dominated by the first baroclinic mode motion. As strong downwelling Rossby waves reach the SWTIO, the contribution of the second baroclinic mode motion in this region can be increased mainly because of the reduction in the vertical stratification of the upper layer above thermocline, and the enhancement in the vertical stratification of the lower layer under thermocline also contributes to it. The vertical displacement of each isothermal is enlarged and the thermal structure of the upper level is modulated, which is indicative of strong vertical mixing. However, the cold Rossby waves increase the vertical stratification of the upper level, restricting the variability related to the second baroclinic mode. On the other hand, during decaying phase of warm Rossby waves, Ekman upwelling and advection processes associated with the surface cyclonic wind circulation can restrain the downwelling processes, carrying the relatively colder water to the near-surface, which results in an out-of-phase phenomenon between sea surface temperature anomaly (SSTA) and sea surface height anomaly (SSHA) in the SWTIO.展开更多
Morpho-tectonic study plays an important role in deciphering the effects of tectonic activity in the geomorphic evolution of the drainage basins.Romushi watershed forms one of the major watersheds of the intermontane ...Morpho-tectonic study plays an important role in deciphering the effects of tectonic activity in the geomorphic evolution of the drainage basins.Romushi watershed forms one of the major watersheds of the intermontane Karewa Basin of Kashmir Valley.The Karewa sediments are characterized by glacio-fluvio-lacustrine deposits capped by the aeolian loess.The geomorphic,morphometric and lithostratigraphic studies of these cap deposits have been carried out to elucidate the effect of tectonics on the geomorphic evolution of Romushi Watershed.Geomorphic mapping was carried out using GPS measurements,DEM at 30m resolution,Topographic Position Index(TPI) model,topographic maps,LANDSAT TM Imagery and field data.Morphometric and morphotectonic analyses in GIS environment were used to calculate various geomorphic indices(Mountain Front Sinuosity Index,Bifurcation Ratio,Asymmetry Factor,River Profile,etc).These indices reveal that the tectonic uplift observed in the region due to Himalayan orogeny coupled with mass movement and aeolian deposition have dominated the landscape evolution of intermontane Karewa Basin of Kashmir throughout the Late Quaternary Period.Additional data from lithostratigraphic measurements were analyzed to understand the geomorphic evolution of intermontane Karewa Basin.The data revealed that the basin has experienced differential uplift and erosion rates from time to time in the geological past.This was corroborated by the results from the morphometric and morphotectonic analysis.展开更多
Most modern tall buildings using lighter construction materials are more flexible, which can lead to excessive wind-induced vibrations resulting in occupant discomfort and structural unsafety. It is necessary to predi...Most modern tall buildings using lighter construction materials are more flexible, which can lead to excessive wind-induced vibrations resulting in occupant discomfort and structural unsafety. It is necessary to predict and mitigate such wind-induced vibration at the preliminary design stage. Fluctuating across and along-wind loads acting on a tall building that could not be formulated theoretically were simulated numerically in the time domain using known across and along-wind load spectra. These simulated wind loads were used to estimate the across and along-wind responses of a tall building, which are less narrow-banded processes, based on the state space variable approach. The simulated across-wind response of root-mean-square value(0.0047) and that of KAREEM's(0.0040) and the simulated along-wind response of root-mean-square value(0.021) and that of SOLARI's(0.027) were compared. It is found that these are good approximations of closed form responses. Therefore, these numerically simulated across and along-wind loads can be used for across and along-wind responses estimation for the wind-resistant design of a tall building at the preliminary design stage.展开更多
The Geoscience Laser Altimeter System(GLAS)accurately detects the vertical structural information of a target within its laser spot and is a promising system for the inversion of structural features and other biophysi...The Geoscience Laser Altimeter System(GLAS)accurately detects the vertical structural information of a target within its laser spot and is a promising system for the inversion of structural features and other biophysical parameters of forest ecosystems.Since the GLAS footprints are discontinuously distributed with a relativity low density,continuous vegetation height distributions cannot be mapped with a high accuracy using GLAS data alone.The MODIS BRDF product provides more forest structural information than other optical remote sensing data.This study aimed to map forest canopy heights over China from the GLAS and MODIS BRDF data.Firstly,the waveform characteristic parameters were extracted from the GLAS data by the method of wavelet analysis,and the terrain index was calculated using the ASTER GDEM data.Secondly,the model reducing the topographic influence was constructed from the waveform characteristic parameters and terrain index.Thirdly,the final canopy height estimation model was constructed from the neural network combining the canopy height estimated with the GLAS point and the MODIS BRDF data,and applied to get the continuous canopy height map over China.Finally,the map was validated by the measured data and the airborne Li DAR data,and the validation results indicated that forest canopy heights can be estimated with high accuracy from combined GLAS and MODIS data.展开更多
The warming over the Tibetan Plateau(TP) is very significant during last 30 years,but the thermal forcing has been weakened.The thermal weakening is attributed mainly to the enhancement of the TOA(top of atmosphere) o...The warming over the Tibetan Plateau(TP) is very significant during last 30 years,but the thermal forcing has been weakened.The thermal weakening is attributed mainly to the enhancement of the TOA(top of atmosphere) outgoing radiation.This enhancement is opposite to the greenhouse-gas-induced weakening of the global mean TOA outgoing radiation and is also unable to be explained by the observed decrease of total cloud cover.This study presents the importance of cloud height change and the warming over the TP in modulating the TOA radiation budget and thus the thermal forcing during spring and summer.On the basis of surface observations and satellite radiation data,we found that both the TOA outgoing shortwave radiation and longwave radiation were enhanced during this period.The former enhancement is due mainly to the increase of low-level cloud cover,which has a strong reflection to shortwave radiation,especially in summer.The latter enhancement is caused mainly by the planetary warming,and it is further enhanced by the decrease of total cloud cover in spring,as clouds extinguish outgoing longwave radiation emitted from the land surface.Therefore,the radiative cooling enhancement and thus the thermal weakening over the TP is a response of the earth-atmosphere system to the unique change of cloud cover configuration and the rapid warming of the land surface.However,these trends in cloud cover and TOA outgoing radiation are not well represented in four reanalyses.展开更多
A concept of entropy increment ratio ( s- ) is introduced for compressible turbulence simulation through a series of direct nu- merical simulations (DNS). s- represents the dissipation rate per unit mechanical ene...A concept of entropy increment ratio ( s- ) is introduced for compressible turbulence simulation through a series of direct nu- merical simulations (DNS). s- represents the dissipation rate per unit mechanical energy with the benefit of independence of freestream Mach numbers. Based on this feature, we construct the shielding function f, to describe the boundary layer region and propose an entropy-based detached-eddy simulation method (SDES). This approach follows the spirit of delayed de- tached-eddy simulation (DDES) proposed by Spalart et al. in 2005, but it exhibits much better behavior after their performanc- es are compared in the following flows, namely, pure attached flow with thick boundary layer (a supersonic fiat-plate flow with high Reynolds number), fully separated flow (the supersonic base flow), and separated-reattached flow (the supersonic cavity-ramp flow). The Reynolds-averaged Navier-Stokes (RANS) resolved region is reliably preserved and the modeled stress depletion (MSD) phenomenon which is inherent in DES and DDES is partly alleviated. Moreover, this new hybrid strategy is simple and general, making it applicable to other models related to the boundary layer predictions.展开更多
Although the Tibetan Plateau is widely thought as a potential dust source to the atmosphere over East Asia,little is known about the temporal changes of Tibetan dust activities and Tibetan dust source strength.In this...Although the Tibetan Plateau is widely thought as a potential dust source to the atmosphere over East Asia,little is known about the temporal changes of Tibetan dust activities and Tibetan dust source strength.In this study,we address these two issues by analyzing dust storm frequencies and aerosol index through remote sensing data and by means of numerical simulation.The findings indicate that monthly dust profiles over the Tibetan Plateau vary significantly with time.Near the surface,dust concentration increases from October,reaches its maximum in February March,and then decreases.In the middle to upper troposphere,dust concentration increases from January,reaches its maximum in May June,and decreases thereafter.Although Tibetan dust sources are important contributors to dust in the atmosphere over the Tibetan Plateau,their contribution to dust in the troposphere over eastern China is weaker.The contribution of Tibetan dust sources to dust in the atmosphere over the Tibetan Plateau decreases sharply with height,from 69% at the surface,40% in the lower troposphere,and 5% in the middle troposphere.Furthermore,the contribution shows seasonal changes,with dust sources at the surface at approximately 80% between November and May and 45% between June and September;in the middle and upper troposphere,dust sources are between 21% from February to March and less than 5% in the other months.Overall,dust aerosols originating from the Tibetan Plateau contribute to less than 10% of dust in East Asia.展开更多
In order to develop a wall function boundary condition for high-speed flows so as to reduce the grid-dependence of the simula- tion for the skin friction and heat flux, a research was performed to improve the compress...In order to develop a wall function boundary condition for high-speed flows so as to reduce the grid-dependence of the simula- tion for the skin friction and heat flux, a research was performed to improve the compressible wall function boundary condition proposed by Nichols. Values of parameters in the velocity law-of-the-wall were revised according to numerical experiments and the expression of temperature law-of-the-wall was modified based on theoretical analysis and numerical simulation. Be- sides, the formula of the heat conduction term in near-wall region was derived so that the coupling between the wall function boundary condition and CFD code was realized more accurately. Whereafter, the application study of the modified wall func- tion was carried out. The numerical case of supersonic turbulent boundary layer on a flat plate illustrated that the modified wall function produces reasonable results of skin friction and heat flux, and profiles of velocity, temperature and turbulent eddy viscosity for coarse grids with the initial wall spacing of y+〈400, and that the modifications to the original wall function can obviously improve the simulation precision. As for the application of separation flows, it was found from the numerical cases of supersonic cavity flow and hypersonic axisymmetric compression comer that the compressible velocity law-of-the-wall originally established based on the fully-developed attached turbulent boundary layer approximately holds in the near-wall re- gion inside the separation flows, which ensures that reliable skin friction and heat flux can be given by the wall function inside the separation flows, while for the region near separation and reattachment points, the wall function gives results with a rela- tively large error, because the velocity law-of-the-wall used in the wall function takes on obvious deviation from the real ve- locity profiles near the separation and reattachment points.展开更多
Nonlinear parabolized stability equations are employed in this work to investigate the nonlinear development of the G6rtler insta- bility up to the saturation stage. The perturbed boundary layer is highly inflectional...Nonlinear parabolized stability equations are employed in this work to investigate the nonlinear development of the G6rtler insta- bility up to the saturation stage. The perturbed boundary layer is highly inflectional both in the normalwise and spanwise directions and receptive to the secondary instabilities. The Floquet theory is applied to solve the fundamental, subharmonic and detuned secondary instabilities. With the Gortler-vortices-distorted base flow, two classes of secondary disturbances, i.e. odd modes and even modes, are identified according to the eigenfunctions of the disturbances. These modes may result in different patterns in the late stages of the transition process. Li and Malik [ 1 ] have shown the sinuous and varicose types of breakdown originating from the odd and even modes. The current study focuses on the four most amplified modes termed the even modes I & Ⅱ and odd modes I & lI. Odd mode II was missing in the work of Li and Malik [1] probably due to their inviscid simplifeation. The detuned modes are confirmed to be less amplifed than the fundamental (for the odd mode I) and subharmonic modes (for even modes I & II and the odd mode II).展开更多
The paper presents a new fast integral equation solver for Maxwell's equations in 3-D layered media. First, the spectral domain dyadic Green's function is derived, and the 0-th and the 1-st order Hankel transforms o...The paper presents a new fast integral equation solver for Maxwell's equations in 3-D layered media. First, the spectral domain dyadic Green's function is derived, and the 0-th and the 1-st order Hankel transforms or Sommerfeld-type integrals are used to recover all components of the dyadic Green's function in real space. The Hankel transforms are performed with the adaptive generalized Gaussian quadrature points and window functions to minimize the computational cost. Subsequently, a fast integral equation solver with O(N2zNxNy log(NzNy)) in layered media is developed by rewriting the layered media integral operator in terms of Hankel transforms and using the new fast multipole method for the n-th order Bessel function in 2-D. Computational cost and parallel efficiency of the new algorithm are presented.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41475021)
文摘This paper presents a new method to estimate the height of the atmospheric boundary layer(ABL) by using COSMIC radio occultation bending angle(BA) data. Using the numerical differentiation method combined with the regularization technique, the first derivative of BA profiles is retrieved, and the height at which the first derivative of BA has the global minimum is defined to be the ABL height. To reflect the reliability of estimated ABL heights, the sharpness parameter is introduced, according to the relative minimum of the BA derivative. Then, it is applied to four months of COSMIC BA data(January, April, July, and October in 2008), and the ABL heights estimated are compared with two kinds of ABL heights from COSMIC products and with the heights determined by the finite difference method upon the refractivity data. For sharp ABL tops(large sharpness parameters), there is little difference between the ABL heights determined by different methods, i.e.,the uncertainties are small; whereas, for non-sharp ABL tops(small sharpness parameters), big differences exist in the ABL heights obtained by different methods, which means large uncertainties for different methods. In addition, the new method can detect thin ABLs and provide a reference ABL height in the cases eliminated by other methods. Thus, the application of the numerical differentiation method combined with the regularization technique to COSMIC BA data is an appropriate choice and has further application value.
基金supported by the Meteorological Research Open Foundation of Huaihe Basin grant number HRM201604。
文摘The global planetary boundary layer height(PBLH)estimated from 11 years(2007–17)of Integrated Global Radiosonde Archive(IGRA)data,Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)soundings,and European Center for Medium-Range Weather Forecasts(ECMWF)interim reanalysis(ERAInterim)data,are compared in this study.In general,the spatial distribution of global PBLH derived from ERAInterim is consistent with the one from IGRA,both at 1200 UTC and 0000 UTC.High PBLH occurs at noon local time,because of strong radiation energy and convective activity.There are larger differences between the results of COSMIC and the other two datasets.PBLHs derived from COSMIC are much higher than those from radiosonde and reanalysis data.However,PBLHs derived from the three datasets all exhibit higher values in the low latitudes and lower ones in the high latitudes.The latitudinal difference between IGRA and COSMIC ranges from−1700 m to−500 m,while it ranges from−500 m to 250 m for IGRA and ERA-Interim.It is found that the differences among the three datasets are larger in winter and smaller in summer for most studied latitudes.
文摘Disaster weather forecasting is becoming increasingly important. In this paper, the trajectories of Mesoscale Convective Systems (MCSs) were automatically tracked over the Chinese Tibetan Plateau using Geostationary Meteorological Satellite (GMS) brightness temperature (Tbb) from June to August 1998, and the MCSs are classified according to their movement direction. Based on these, spatial data mining methods are used to study the relationships between MCSs trajectories and their environmental physical field values. Results indicate that at 400hPa level, the trajectories of MCSs moving across the 105°E boundary are less influenced by water vapor flux divergence, vertical wind velocity, reIative humidity and K index. In addition, if the gravity central longitude locations of MCSs are between 104°E and 105°E, then geopotential height and wind divergence are two main factors in movement causation. On the other hand, at 500hPa level, the trajectories of MCSs in a north-east direction are mainly influenced by K index and water vapor flux divergence when their central locations are less than 104°E. However, the MCSs moving in an east and south-east direction are influenced by a few correlation factors at this level.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472272 and 91215302)the Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201206041)
文摘The multifractality of energy and thermal dissipation of fully developed intermittent turbulence is investigated in the urban canopy layer under unstable conditions by the singularity spectrum for the fractal dimensions of sets of singularities characterizing multifractals. In order to obtain high-order moment properties of smallscale turbulent dissipation in the inertial range, an ultrasonic anemometer with a high sampling frequency of 100 Hz was used. The authors found that the turbulent signal could be singular everywhere. Moreover, the singular exponents of energy and thermal dissipation rates are most frequently encountered at around 0.2, which is significantly smaller than the singular exponents for a wind tunnel at a moderate Reynolds number. The evidence indicates a higher intermittency of turbulence in the urban canopy layer at a high Reynolds number, which is demonstrated by the data with high temporal resolution. Furthermore, the temperature field is more intermittent than the velocity field. In addition, a large amount of samples could be used for verification of the results.
基金The financial support from the Ministry of Science and Technology under Grant MOST 105-3113-E-033-001
文摘In a rectangular fluidized bed combustor, the tracer gas is injected continuously into the bed from a point source at the center of the distributor plate. In this study, a general governing equation is formulated for tracer gas dispersion in the bed. An analytical solution is derived to estimate the dispersion coefficients, Dxand Dy, in a horizontal plane. The concentration profiles at different sampling heights with various gas velocities are plotted.Subsequently, to estimate the dispersion coefficients, surface fitting of the obtained analytical solution to the experimental data is performed. The dispersion coefficients obtained from this model are compared with those of a conventional model. Additionally, the effect of walls, bed height and gas injection rate on the dispersion coefficients in a horizontal plane is investigated, and the effect of distributor design on the dispersion coefficients in a horizontal plane is investigated with different tracer positions. It is found that Dxand Dyare nearly equivalent at a lower tracer gas ratio of the injected gas to the total gas flow rate. It is also demonstrated that the effect of bed height on Dxis minor. This model is also able to estimate the dispersion coefficients in the case of a multihorizontal nozzle distributor.
基金Supported by the National Natural Science Foundation of China (Nos. 40776013, 40306006)the State Key Basic Research Development Project (Nos. 2007CB411802, 2006CB403603)
文摘We investigate the influence of low-frequency Rossby waves on the thermal structure of the upper southwestern tropical Indian Ocean (SWTIO) using Argo profiles, satellite altimetric data, sea surface temperature, wind field data and the theory of linear vertical normal mode decomposition. Our results show that the SWTIO is generally dominated by the first baroclinic mode motion. As strong downwelling Rossby waves reach the SWTIO, the contribution of the second baroclinic mode motion in this region can be increased mainly because of the reduction in the vertical stratification of the upper layer above thermocline, and the enhancement in the vertical stratification of the lower layer under thermocline also contributes to it. The vertical displacement of each isothermal is enlarged and the thermal structure of the upper level is modulated, which is indicative of strong vertical mixing. However, the cold Rossby waves increase the vertical stratification of the upper level, restricting the variability related to the second baroclinic mode. On the other hand, during decaying phase of warm Rossby waves, Ekman upwelling and advection processes associated with the surface cyclonic wind circulation can restrain the downwelling processes, carrying the relatively colder water to the near-surface, which results in an out-of-phase phenomenon between sea surface temperature anomaly (SSTA) and sea surface height anomaly (SSHA) in the SWTIO.
文摘Morpho-tectonic study plays an important role in deciphering the effects of tectonic activity in the geomorphic evolution of the drainage basins.Romushi watershed forms one of the major watersheds of the intermontane Karewa Basin of Kashmir Valley.The Karewa sediments are characterized by glacio-fluvio-lacustrine deposits capped by the aeolian loess.The geomorphic,morphometric and lithostratigraphic studies of these cap deposits have been carried out to elucidate the effect of tectonics on the geomorphic evolution of Romushi Watershed.Geomorphic mapping was carried out using GPS measurements,DEM at 30m resolution,Topographic Position Index(TPI) model,topographic maps,LANDSAT TM Imagery and field data.Morphometric and morphotectonic analyses in GIS environment were used to calculate various geomorphic indices(Mountain Front Sinuosity Index,Bifurcation Ratio,Asymmetry Factor,River Profile,etc).These indices reveal that the tectonic uplift observed in the region due to Himalayan orogeny coupled with mass movement and aeolian deposition have dominated the landscape evolution of intermontane Karewa Basin of Kashmir throughout the Late Quaternary Period.Additional data from lithostratigraphic measurements were analyzed to understand the geomorphic evolution of intermontane Karewa Basin.The data revealed that the basin has experienced differential uplift and erosion rates from time to time in the geological past.This was corroborated by the results from the morphometric and morphotectonic analysis.
基金Project(2011-0028567)supported by the National Research Foundation of Korea
文摘Most modern tall buildings using lighter construction materials are more flexible, which can lead to excessive wind-induced vibrations resulting in occupant discomfort and structural unsafety. It is necessary to predict and mitigate such wind-induced vibration at the preliminary design stage. Fluctuating across and along-wind loads acting on a tall building that could not be formulated theoretically were simulated numerically in the time domain using known across and along-wind load spectra. These simulated wind loads were used to estimate the across and along-wind responses of a tall building, which are less narrow-banded processes, based on the state space variable approach. The simulated across-wind response of root-mean-square value(0.0047) and that of KAREEM's(0.0040) and the simulated along-wind response of root-mean-square value(0.021) and that of SOLARI's(0.027) were compared. It is found that these are good approximations of closed form responses. Therefore, these numerically simulated across and along-wind loads can be used for across and along-wind responses estimation for the wind-resistant design of a tall building at the preliminary design stage.
基金supported by the Major International Cooperation and Exchange Project of National Natural Science Foundation of China(Grant No.41120114001)the National Basic Research Program of China(Grant NO.2013CB733405)+1 种基金the National Natural Science Foundation of China(Grant Nos.41371350,41171279)the 100 Talents Program of the Chinese Academy of Sciences and Beijing Natural Science Foundation(Grant No.4144074)
文摘The Geoscience Laser Altimeter System(GLAS)accurately detects the vertical structural information of a target within its laser spot and is a promising system for the inversion of structural features and other biophysical parameters of forest ecosystems.Since the GLAS footprints are discontinuously distributed with a relativity low density,continuous vegetation height distributions cannot be mapped with a high accuracy using GLAS data alone.The MODIS BRDF product provides more forest structural information than other optical remote sensing data.This study aimed to map forest canopy heights over China from the GLAS and MODIS BRDF data.Firstly,the waveform characteristic parameters were extracted from the GLAS data by the method of wavelet analysis,and the terrain index was calculated using the ASTER GDEM data.Secondly,the model reducing the topographic influence was constructed from the waveform characteristic parameters and terrain index.Thirdly,the final canopy height estimation model was constructed from the neural network combining the canopy height estimated with the GLAS point and the MODIS BRDF data,and applied to get the continuous canopy height map over China.Finally,the map was validated by the measured data and the airborne Li DAR data,and the validation results indicated that forest canopy heights can be estimated with high accuracy from combined GLAS and MODIS data.
基金supported by the Strategic Priority Research Program(B) of the Chinese Academy of Sciences(Grant No.XDB03030300)Global Change Program of Ministry of Science and Technology of China(Grant No.2010CB951703)the National Natural Science Foundation of China(Grant Nos.41190083,41325019)
文摘The warming over the Tibetan Plateau(TP) is very significant during last 30 years,but the thermal forcing has been weakened.The thermal weakening is attributed mainly to the enhancement of the TOA(top of atmosphere) outgoing radiation.This enhancement is opposite to the greenhouse-gas-induced weakening of the global mean TOA outgoing radiation and is also unable to be explained by the observed decrease of total cloud cover.This study presents the importance of cloud height change and the warming over the TP in modulating the TOA radiation budget and thus the thermal forcing during spring and summer.On the basis of surface observations and satellite radiation data,we found that both the TOA outgoing shortwave radiation and longwave radiation were enhanced during this period.The former enhancement is due mainly to the increase of low-level cloud cover,which has a strong reflection to shortwave radiation,especially in summer.The latter enhancement is caused mainly by the planetary warming,and it is further enhanced by the decrease of total cloud cover in spring,as clouds extinguish outgoing longwave radiation emitted from the land surface.Therefore,the radiative cooling enhancement and thus the thermal weakening over the TP is a response of the earth-atmosphere system to the unique change of cloud cover configuration and the rapid warming of the land surface.However,these trends in cloud cover and TOA outgoing radiation are not well represented in four reanalyses.
基金supported by the National Basic Research Program of China(Grant No.2009CB724104)the Innovation Foundation of BUAA for PhD Graduates and the Academic New Artist Award of BUAA for PhD Graduates
文摘A concept of entropy increment ratio ( s- ) is introduced for compressible turbulence simulation through a series of direct nu- merical simulations (DNS). s- represents the dissipation rate per unit mechanical energy with the benefit of independence of freestream Mach numbers. Based on this feature, we construct the shielding function f, to describe the boundary layer region and propose an entropy-based detached-eddy simulation method (SDES). This approach follows the spirit of delayed de- tached-eddy simulation (DDES) proposed by Spalart et al. in 2005, but it exhibits much better behavior after their performanc- es are compared in the following flows, namely, pure attached flow with thick boundary layer (a supersonic fiat-plate flow with high Reynolds number), fully separated flow (the supersonic base flow), and separated-reattached flow (the supersonic cavity-ramp flow). The Reynolds-averaged Navier-Stokes (RANS) resolved region is reliably preserved and the modeled stress depletion (MSD) phenomenon which is inherent in DES and DDES is partly alleviated. Moreover, this new hybrid strategy is simple and general, making it applicable to other models related to the boundary layer predictions.
基金supported by National Basic Research Program of China (Grant No.2012CB955301)National Natural Science Foundation of China(Grant No.41101075)+1 种基金China Postdoctoral Science Foundation (Grant Nos.20090460222,201104060)State Key Laboratory of Earth Surface Processes and Resource Ecology(Grant No.2011-RC-01)
文摘Although the Tibetan Plateau is widely thought as a potential dust source to the atmosphere over East Asia,little is known about the temporal changes of Tibetan dust activities and Tibetan dust source strength.In this study,we address these two issues by analyzing dust storm frequencies and aerosol index through remote sensing data and by means of numerical simulation.The findings indicate that monthly dust profiles over the Tibetan Plateau vary significantly with time.Near the surface,dust concentration increases from October,reaches its maximum in February March,and then decreases.In the middle to upper troposphere,dust concentration increases from January,reaches its maximum in May June,and decreases thereafter.Although Tibetan dust sources are important contributors to dust in the atmosphere over the Tibetan Plateau,their contribution to dust in the troposphere over eastern China is weaker.The contribution of Tibetan dust sources to dust in the atmosphere over the Tibetan Plateau decreases sharply with height,from 69% at the surface,40% in the lower troposphere,and 5% in the middle troposphere.Furthermore,the contribution shows seasonal changes,with dust sources at the surface at approximately 80% between November and May and 45% between June and September;in the middle and upper troposphere,dust sources are between 21% from February to March and less than 5% in the other months.Overall,dust aerosols originating from the Tibetan Plateau contribute to less than 10% of dust in East Asia.
基金supported by the National Natural Science Foundation of China(Grant No.11202014)
文摘In order to develop a wall function boundary condition for high-speed flows so as to reduce the grid-dependence of the simula- tion for the skin friction and heat flux, a research was performed to improve the compressible wall function boundary condition proposed by Nichols. Values of parameters in the velocity law-of-the-wall were revised according to numerical experiments and the expression of temperature law-of-the-wall was modified based on theoretical analysis and numerical simulation. Be- sides, the formula of the heat conduction term in near-wall region was derived so that the coupling between the wall function boundary condition and CFD code was realized more accurately. Whereafter, the application study of the modified wall func- tion was carried out. The numerical case of supersonic turbulent boundary layer on a flat plate illustrated that the modified wall function produces reasonable results of skin friction and heat flux, and profiles of velocity, temperature and turbulent eddy viscosity for coarse grids with the initial wall spacing of y+〈400, and that the modifications to the original wall function can obviously improve the simulation precision. As for the application of separation flows, it was found from the numerical cases of supersonic cavity flow and hypersonic axisymmetric compression comer that the compressible velocity law-of-the-wall originally established based on the fully-developed attached turbulent boundary layer approximately holds in the near-wall re- gion inside the separation flows, which ensures that reliable skin friction and heat flux can be given by the wall function inside the separation flows, while for the region near separation and reattachment points, the wall function gives results with a rela- tively large error, because the velocity law-of-the-wall used in the wall function takes on obvious deviation from the real ve- locity profiles near the separation and reattachment points.
基金supported by the National Natural Science Foundation of China(Grant Nos.10932005 and 11202115)
文摘Nonlinear parabolized stability equations are employed in this work to investigate the nonlinear development of the G6rtler insta- bility up to the saturation stage. The perturbed boundary layer is highly inflectional both in the normalwise and spanwise directions and receptive to the secondary instabilities. The Floquet theory is applied to solve the fundamental, subharmonic and detuned secondary instabilities. With the Gortler-vortices-distorted base flow, two classes of secondary disturbances, i.e. odd modes and even modes, are identified according to the eigenfunctions of the disturbances. These modes may result in different patterns in the late stages of the transition process. Li and Malik [ 1 ] have shown the sinuous and varicose types of breakdown originating from the odd and even modes. The current study focuses on the four most amplified modes termed the even modes I & Ⅱ and odd modes I & lI. Odd mode II was missing in the work of Li and Malik [1] probably due to their inviscid simplifeation. The detuned modes are confirmed to be less amplifed than the fundamental (for the odd mode I) and subharmonic modes (for even modes I & II and the odd mode II).
基金supported by the US Army Ofce of Research(Grant No.W911NF11-1-0364)the National Science Foundation of USA(Grant No.DMS-1005441)National Natural Science Foundation of China(Grant No.91230105)
文摘The paper presents a new fast integral equation solver for Maxwell's equations in 3-D layered media. First, the spectral domain dyadic Green's function is derived, and the 0-th and the 1-st order Hankel transforms or Sommerfeld-type integrals are used to recover all components of the dyadic Green's function in real space. The Hankel transforms are performed with the adaptive generalized Gaussian quadrature points and window functions to minimize the computational cost. Subsequently, a fast integral equation solver with O(N2zNxNy log(NzNy)) in layered media is developed by rewriting the layered media integral operator in terms of Hankel transforms and using the new fast multipole method for the n-th order Bessel function in 2-D. Computational cost and parallel efficiency of the new algorithm are presented.