The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the tem...The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.展开更多
Dual-phase high-entropy alloys(DP-HEAs)with excellent strength-ductility combinations have attracted scientific interests.In the present study,the microstructures of AlCrCuFeNi3.0DP-HEA fabricated via selective laser ...Dual-phase high-entropy alloys(DP-HEAs)with excellent strength-ductility combinations have attracted scientific interests.In the present study,the microstructures of AlCrCuFeNi3.0DP-HEA fabricated via selective laser melting(SLM)are rationally adjusted and controlled.The mechanisms engendering the hierarchical microstructures are revealed.It is found that the AlCrCuFeNi3.0fabricated by SLM at the scanning speed of 400 mm s-1falls into the eutectic coupled zone,and increasing the scanning speed will make this composition deviate away from the eutectic coupled zone due to the increased cooling rate.The enrichment of Cr and Fe solutes with large growth restriction values ahead of the solid/liquid interface can develop a constitutional supercooling zone,thus facilitating the heterogeneous nucleation and nearequiaxed grain formation.The synergy of the near-eutectic DP nano-structures and near-equiaxed grains instead of columnar ones effectively suppresses cracking for the as-built DP-HEA.During the tensile deformation,the intergranular back stress hardening similar to the grain-boundary strengthening is discovered.Meanwhile,the near-eutectic microstructures comprised of soft face-centered cubic and hard ordered bodycentered cubic(B2)DP nano-structures lead to plastic strain incompatibility within grains,thus producing the intragranular back stress.The Cr-rich nano-precipitates inside the B2 phase are found to be sheared by dislocation gliding and can complement the back stress.Additionally,multiple strengthening mechanisms are physically evaluated,and the back stress strengthening contributes obviously to the high performances of the as-built DP-HEA.展开更多
基金Project (51005112) supported by the National Natural Science Foundation of ChinaProject (2010ZF56019) supported by the Aviation Science Foundation of China+1 种基金Project (GJJ11156) supported by the Education Commission of Jiangxi Province, ChinaProject(GF200901008) supported by the Open Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, China
文摘The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.
基金supported by the Pre-research Fund Project of Ministry of Equipment and Development of China(61409230301)the Fundamental Research Funds for the Central Universities(2019kfyXMPY005 and 2019kfyXKJC042)。
文摘Dual-phase high-entropy alloys(DP-HEAs)with excellent strength-ductility combinations have attracted scientific interests.In the present study,the microstructures of AlCrCuFeNi3.0DP-HEA fabricated via selective laser melting(SLM)are rationally adjusted and controlled.The mechanisms engendering the hierarchical microstructures are revealed.It is found that the AlCrCuFeNi3.0fabricated by SLM at the scanning speed of 400 mm s-1falls into the eutectic coupled zone,and increasing the scanning speed will make this composition deviate away from the eutectic coupled zone due to the increased cooling rate.The enrichment of Cr and Fe solutes with large growth restriction values ahead of the solid/liquid interface can develop a constitutional supercooling zone,thus facilitating the heterogeneous nucleation and nearequiaxed grain formation.The synergy of the near-eutectic DP nano-structures and near-equiaxed grains instead of columnar ones effectively suppresses cracking for the as-built DP-HEA.During the tensile deformation,the intergranular back stress hardening similar to the grain-boundary strengthening is discovered.Meanwhile,the near-eutectic microstructures comprised of soft face-centered cubic and hard ordered bodycentered cubic(B2)DP nano-structures lead to plastic strain incompatibility within grains,thus producing the intragranular back stress.The Cr-rich nano-precipitates inside the B2 phase are found to be sheared by dislocation gliding and can complement the back stress.Additionally,multiple strengthening mechanisms are physically evaluated,and the back stress strengthening contributes obviously to the high performances of the as-built DP-HEA.