Maize is an important food crop, as well as the irreplaceable feed and industrial materials, having huge market demand in China. Southwestern region of China is the third largest main maize producing zone, and the fre...Maize is an important food crop, as well as the irreplaceable feed and industrial materials, having huge market demand in China. Southwestern region of China is the third largest main maize producing zone, and the frequent occurrence of abiotic stress conditions such as drought, heat, cold, wet shaded stress have severely affected the development of maize production, causing low and unstable corn yields, severely restricting the maize industry development in the southwest of China. This paper preliminarily describes the maize resistance to abiotic stresses in southwestem region of China, putting forward the countermeasures and the key research direction in the practice of breeding in order to provide reference for the cultivation of new varieties with high yield and stress resistance, and improving the levels of maize stress resistance breeding in southwestern region of China.展开更多
Implementing conservation actions on-the-ground is not a straightforward process,especially when faced with high scientific uncertainty due to limited available information. This is especially acute in regions of the ...Implementing conservation actions on-the-ground is not a straightforward process,especially when faced with high scientific uncertainty due to limited available information. This is especially acute in regions of the world that harbor many unique species that have not been well studied,such as the alpine zone of the Hengduan Mountains of Northwest Yunnan (NWY),a global biodiversity hotspot and site of The Nature Conservancy’s Yunnan Great Rivers Project. We conducted a quantitative,but rapid regional-level assessment of the alpine flora across NWY to provide a broad-based understanding of local and regional patterns of the alpine flora,the first large-scale analysis of alpine biodiversity patterns in this region. Multivariate analyses were used to classify the major plant community types and link community patterns to habitat variables. Our analysis indicated that most species had small distributions and/or small population sizes. Strong patterns emerged with higher diversity in the more northern mountains,but beta diversity was high,averaging only 10% among sites. The ordinations indicated that elevation and geographic location were the dominant environ-mental gradients underlying the differences in the species composition among communities. The high beta diversity across the alpine of these mountains implies that conservation strategies ultimately will require the protection of large numbers of species over a large geographical area. However,prioritiza-tion should be given to areas where potential payoffs are greatest. Sites with high species richness also have a greater number of endemic species,and,by focusing efforts on these sites,conservation investments would be maximized by protecting the greatest number of unique species.展开更多
Mountains and plateaus in Southwest China contain many subalpine and alpine wetlands, with signifieant hydroecological functions. But ungauged or poorly gauged eonditions limit the study and understanding of hydrologi...Mountains and plateaus in Southwest China contain many subalpine and alpine wetlands, with signifieant hydroecological functions. But ungauged or poorly gauged eonditions limit the study and understanding of hydrological regimes of these wetland types. This study selects an ungauged subalpine wetland - Napahai in Northwest Yunnan, China - as a case for developing a practical approach to revealing its storage-area relationship of open water. A Trimble R8 GNSS (Global Navigation Satellites Systems) RTK (Real-time Kinematic system) and sonar fathometer were used to survey fine- resolution elevation data and generate a digital elevation model of the Napahai Wetland. Forty-four Landsat images from 1987 to 2Oll were collected, and the Normalized Difference Water Index was used to classify open water features in the area. The area of open water in Napahai was ealculated for each phase. With these data and a developed conceptual model, the storage of open water for each phase was estimated using ArcGIS tools. Both storage and area of open water showed significant intra-annual and inter-annual variations. In the rainy season, the monthly change of average storage of open water in Napahai showed about 1-2 months lag behind mean monthly rainfall. The storage-area relationship of open water was well fit by a power function equation (R2=0.91, n=44). This study indicates that if detailedelevations are available for similarly ungauged subalpine wetlands in Southwest China, researchers can use this practical approach to estimate multi- temporal areas and storages and reveal the storage- area relationship of open water in the wetlands. The study provided valuable information of this ease wetland for optimizing its hydro-ecological managements and a new method to wetland researchers and managers for the hydrological study of similarly ungauged wetland complex.展开更多
Vegetation cover is the main factor of soil loss prevention.The C-factor of the RUSLE(Revised Universal Soil Loss Equation) was predicted with NDVI,ground data and exponential regression equation for mountain rangelan...Vegetation cover is the main factor of soil loss prevention.The C-factor of the RUSLE(Revised Universal Soil Loss Equation) was predicted with NDVI,ground data and exponential regression equation for mountain rangelands of Kyrgyzstan.Time series of C-factor,precipitation and temperature were decomposed into seasonal and trend components with STL(seasonal decomposition by loess) to assess their interrelations.C-factor,precipitation and temperature trend components indicated significant lagged correlation,whereas seasonal components indicated more complex relations with climate factors which can be promoting as well as limiting factors for vegetation development,depending on the season.Rainy springs and hot summers may increase soil loss dramatically,whereas warm and dry springs with rainy summers can decrease it.Steep slopes indicated higher soil loss ratio,whereas flat areas were better protected by vegetation.展开更多
A 350-cm-long sediment core sequence from Dahu Swamp situated in the eastern Nanling Mountains was selected for high-resolution paleoclimatic reconstruction since the Late Glacial period. The multi-proxy records of th...A 350-cm-long sediment core sequence from Dahu Swamp situated in the eastern Nanling Mountains was selected for high-resolution paleoclimatic reconstruction since the Late Glacial period. The multi-proxy records of this paper reveal several evidently dry and cold events that may coincide with the Oldest Dryas, the Older Dryas, the Younger Dryas in the late deglacial period. Two relatively wetter and warmer phases occurred in ca. 15,000-14,400 cal yr B.P. and 13,500-12,800 cal yr B.P. respectively may correspond to the Boiling and Allerod warming events. The Younger Dryas event (ca. 12,800-11,500 cal yr B.P.) revealed by multi-proxies was characterized by relatively colder and drier climate. A warmer and wetter climate, occurred in ca. 10,000~5000 cal yr B.P., was consistent with the Holoeene Optimum, which coincided with the maximum Northern Hemisphere insolation. The "8.2kyr cool event" and even the "8.8kyr cool event" were indicated as well from our sediment core. A dry mid-Holocene period (ca. 60000 3000 cal yr B.P.) indicated by multi-proxies does not follow the traditional concept of the wet mid-Holocene conditions observed in other regions in China.展开更多
This study investigates the relationship between the hotspot-ridge interaction and the formation of oceanic plateaus and seamounts in the Southwest Indian Ocean.We first calculated the relative distance between the So...This study investigates the relationship between the hotspot-ridge interaction and the formation of oceanic plateaus and seamounts in the Southwest Indian Ocean.We first calculated the relative distance between the Southwest Indian Ridge (SWIR) and relevant hotspots on the basis of models of plate reconstruction,and then calculated the corresponding excess magmatic anomalies of the hotspots on the basis of residual bathymetry and Airy isostasy.The results reveal that the activities of the Marion hotspot can be divided into three main phases:interaction with the paleo-Rodrigues triple junction (73.6-68.5 Ma),interaction with the SWIR (68.5-42.7 Ma),and intra-plate volcanism (42.7-0 Ma).These three phases correspond to the formation of the eastern,central,and western parts of the Del Cano Rise,respectively.The magnitude and apparent periodicity of the magmatic volume flux of the Marion hotspot appear to be dominated by the hotspot-ridge distance.The periodicity of the Marion hotspot is about 25 Ma,which is much longer than that of the Hawaii and Iceland hotspots (about 15 Ma).展开更多
Grazing and over-grazing may drive changes in the diversity and functioning of below-ground meadow ecosystems. A field soil survey was conducted to compare microbial biomass carbon (Cmin) and soil fauna communities ...Grazing and over-grazing may drive changes in the diversity and functioning of below-ground meadow ecosystems. A field soil survey was conducted to compare microbial biomass carbon (Cmin) and soil fauna communities in the two main grassland management systems in subalpine regions of Yunnan Province, China: perennial grazing currently practiced due to increasing herd sizes and traditional seasonal grazing. A three-year exclosure experiment was then conducted to further compare the effects of different grazing practices, including treatments of no mowing, perennial grazing (NM + G), mowing followed by seasonal grazing (M + G), mowing and no grazing (M + NG), and no mowing or grazing (NM + NG). The comparative survey result revealed that Cmin and total density of soil fauna were significantly lower at a perennially grazed site than at a seasonally grazed site. The experiment results showed that in comparison to non-grazing treatments (M + NG and NM + NG), grazing (NM + G and M + G) reduced total fauna density (by 150 individuals m-2) and the number of taxonomic groups present (by 0.32 taxa m-2). Mowing decreased Cmin (by 0.31 mg g-l). Furthermore, the NM + G treatment (perennial grazing) had the lowest density of Collembola (16.24 individuals m-2), one of the two most common taxonomic groups, although other taxonomic groups responded differently to the treatments. Treatment effects on soil fauna were consistent with those on above-ground grasses, in which C:N ratios were greatly reduced by grazing, with this effect being the greatest for the NM + G treatment. In contrast, different grazing treatments had little effect on C:N ratio of soil. Furthermore, the traditional grazing method (mowing followed by seasonal grazing) may have less severe effects on some taxonomic groups than perennial grazing. Therefore, an appropriate management should aim to protect soil fauna and microbes in this area from over-grazing and against further degradation.展开更多
基金Supported by the Corn Heat-resisting Resources Exploitation and Chain Molecular Marker Development(cstc2015jcyj BX0112)the Screening and Breeding of Feeding Maize Varieties in the Hilly and Mountain Areas(cstc2016shms-ztzx80017)+5 种基金the Functional Corn Germplasm Renounces Precise Identification and Material Innovation(cstc-2016shms-ztzx80013)the Breeding of Maize CMS Materials(2013cstc-jbky-00565)the Screening and Creation of High-temperature and Drought Resisting Corn Materials(2013cstc-jbky-00564)the Creation and Application of Shade-tolerant Corn Germplasm(cstc2016shmszx0218)the Special Fund for Scientific and Technological Innovation of Social People’s Livelihood of Chongqing Municipality-Molecular Analysis of Corn Kernel Accumulated Amylose and Development and Application of Genetic Specific Markers(cstc2015shmszx80029)the Innovation of Fine Varieties of Chongqing Academy of Agricultural Sciences-Research and Application of the Combining Ability of High-efficient Retrospective Improved Corn(NKY-2016AB004)~~
文摘Maize is an important food crop, as well as the irreplaceable feed and industrial materials, having huge market demand in China. Southwestern region of China is the third largest main maize producing zone, and the frequent occurrence of abiotic stress conditions such as drought, heat, cold, wet shaded stress have severely affected the development of maize production, causing low and unstable corn yields, severely restricting the maize industry development in the southwest of China. This paper preliminarily describes the maize resistance to abiotic stresses in southwestem region of China, putting forward the countermeasures and the key research direction in the practice of breeding in order to provide reference for the cultivation of new varieties with high yield and stress resistance, and improving the levels of maize stress resistance breeding in southwestern region of China.
文摘Implementing conservation actions on-the-ground is not a straightforward process,especially when faced with high scientific uncertainty due to limited available information. This is especially acute in regions of the world that harbor many unique species that have not been well studied,such as the alpine zone of the Hengduan Mountains of Northwest Yunnan (NWY),a global biodiversity hotspot and site of The Nature Conservancy’s Yunnan Great Rivers Project. We conducted a quantitative,but rapid regional-level assessment of the alpine flora across NWY to provide a broad-based understanding of local and regional patterns of the alpine flora,the first large-scale analysis of alpine biodiversity patterns in this region. Multivariate analyses were used to classify the major plant community types and link community patterns to habitat variables. Our analysis indicated that most species had small distributions and/or small population sizes. Strong patterns emerged with higher diversity in the more northern mountains,but beta diversity was high,averaging only 10% among sites. The ordinations indicated that elevation and geographic location were the dominant environ-mental gradients underlying the differences in the species composition among communities. The high beta diversity across the alpine of these mountains implies that conservation strategies ultimately will require the protection of large numbers of species over a large geographical area. However,prioritiza-tion should be given to areas where potential payoffs are greatest. Sites with high species richness also have a greater number of endemic species,and,by focusing efforts on these sites,conservation investments would be maximized by protecting the greatest number of unique species.
基金supported by the National Special Basic Research Fund(Grant No.2008FY110300)National Science and Technology Support Program(Grant No.2011BAC09B07)+1 种基金National Natural Science Foundation of China(Grant No.40961003)Scientific Research Fund Project of Yunnan Education Department(Grant No.2011J018)
文摘Mountains and plateaus in Southwest China contain many subalpine and alpine wetlands, with signifieant hydroecological functions. But ungauged or poorly gauged eonditions limit the study and understanding of hydrological regimes of these wetland types. This study selects an ungauged subalpine wetland - Napahai in Northwest Yunnan, China - as a case for developing a practical approach to revealing its storage-area relationship of open water. A Trimble R8 GNSS (Global Navigation Satellites Systems) RTK (Real-time Kinematic system) and sonar fathometer were used to survey fine- resolution elevation data and generate a digital elevation model of the Napahai Wetland. Forty-four Landsat images from 1987 to 2Oll were collected, and the Normalized Difference Water Index was used to classify open water features in the area. The area of open water in Napahai was ealculated for each phase. With these data and a developed conceptual model, the storage of open water for each phase was estimated using ArcGIS tools. Both storage and area of open water showed significant intra-annual and inter-annual variations. In the rainy season, the monthly change of average storage of open water in Napahai showed about 1-2 months lag behind mean monthly rainfall. The storage-area relationship of open water was well fit by a power function equation (R2=0.91, n=44). This study indicates that if detailedelevations are available for similarly ungauged subalpine wetlands in Southwest China, researchers can use this practical approach to estimate multi- temporal areas and storages and reveal the storage- area relationship of open water in the wetlands. The study provided valuable information of this ease wetland for optimizing its hydro-ecological managements and a new method to wetland researchers and managers for the hydrological study of similarly ungauged wetland complex.
基金project “The Impact of the Transformation Process on Human-Environment Interactions in Southern Kyrgyzstan”funded by the Volkswagen Foundation,Hannover,Germany
文摘Vegetation cover is the main factor of soil loss prevention.The C-factor of the RUSLE(Revised Universal Soil Loss Equation) was predicted with NDVI,ground data and exponential regression equation for mountain rangelands of Kyrgyzstan.Time series of C-factor,precipitation and temperature were decomposed into seasonal and trend components with STL(seasonal decomposition by loess) to assess their interrelations.C-factor,precipitation and temperature trend components indicated significant lagged correlation,whereas seasonal components indicated more complex relations with climate factors which can be promoting as well as limiting factors for vegetation development,depending on the season.Rainy springs and hot summers may increase soil loss dramatically,whereas warm and dry springs with rainy summers can decrease it.Steep slopes indicated higher soil loss ratio,whereas flat areas were better protected by vegetation.
基金Under the auspices of National Natural Science Foundation of China (No. 40671189)Natural Science Foundation of Guangdong Province (No. 8151063101000044, 06025042)the Fok Ying Tung Education Foundation (No. 91021)
文摘A 350-cm-long sediment core sequence from Dahu Swamp situated in the eastern Nanling Mountains was selected for high-resolution paleoclimatic reconstruction since the Late Glacial period. The multi-proxy records of this paper reveal several evidently dry and cold events that may coincide with the Oldest Dryas, the Older Dryas, the Younger Dryas in the late deglacial period. Two relatively wetter and warmer phases occurred in ca. 15,000-14,400 cal yr B.P. and 13,500-12,800 cal yr B.P. respectively may correspond to the Boiling and Allerod warming events. The Younger Dryas event (ca. 12,800-11,500 cal yr B.P.) revealed by multi-proxies was characterized by relatively colder and drier climate. A warmer and wetter climate, occurred in ca. 10,000~5000 cal yr B.P., was consistent with the Holoeene Optimum, which coincided with the maximum Northern Hemisphere insolation. The "8.2kyr cool event" and even the "8.8kyr cool event" were indicated as well from our sediment core. A dry mid-Holocene period (ca. 60000 3000 cal yr B.P.) indicated by multi-proxies does not follow the traditional concept of the wet mid-Holocene conditions observed in other regions in China.
基金supported by SOA Funds for Young Scientists(Grant Nos.1084-10)Special Funding for the Basic Scientific Research(Grant Nos.JG0706and JG0716)
文摘This study investigates the relationship between the hotspot-ridge interaction and the formation of oceanic plateaus and seamounts in the Southwest Indian Ocean.We first calculated the relative distance between the Southwest Indian Ridge (SWIR) and relevant hotspots on the basis of models of plate reconstruction,and then calculated the corresponding excess magmatic anomalies of the hotspots on the basis of residual bathymetry and Airy isostasy.The results reveal that the activities of the Marion hotspot can be divided into three main phases:interaction with the paleo-Rodrigues triple junction (73.6-68.5 Ma),interaction with the SWIR (68.5-42.7 Ma),and intra-plate volcanism (42.7-0 Ma).These three phases correspond to the formation of the eastern,central,and western parts of the Del Cano Rise,respectively.The magnitude and apparent periodicity of the magmatic volume flux of the Marion hotspot appear to be dominated by the hotspot-ridge distance.The periodicity of the Marion hotspot is about 25 Ma,which is much longer than that of the Hawaii and Iceland hotspots (about 15 Ma).
基金supported by the Biogeochemistry Laboratory of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, the National Natural Science Foundation of China (Nos. 40671103 and 41271278)the Innovative Program of Chinese Academy of Sciences- “The Effects of Different Land Use on Biodiversity in Northwest of Yunnan, China” (No. KSCX2-SW-123-5)
文摘Grazing and over-grazing may drive changes in the diversity and functioning of below-ground meadow ecosystems. A field soil survey was conducted to compare microbial biomass carbon (Cmin) and soil fauna communities in the two main grassland management systems in subalpine regions of Yunnan Province, China: perennial grazing currently practiced due to increasing herd sizes and traditional seasonal grazing. A three-year exclosure experiment was then conducted to further compare the effects of different grazing practices, including treatments of no mowing, perennial grazing (NM + G), mowing followed by seasonal grazing (M + G), mowing and no grazing (M + NG), and no mowing or grazing (NM + NG). The comparative survey result revealed that Cmin and total density of soil fauna were significantly lower at a perennially grazed site than at a seasonally grazed site. The experiment results showed that in comparison to non-grazing treatments (M + NG and NM + NG), grazing (NM + G and M + G) reduced total fauna density (by 150 individuals m-2) and the number of taxonomic groups present (by 0.32 taxa m-2). Mowing decreased Cmin (by 0.31 mg g-l). Furthermore, the NM + G treatment (perennial grazing) had the lowest density of Collembola (16.24 individuals m-2), one of the two most common taxonomic groups, although other taxonomic groups responded differently to the treatments. Treatment effects on soil fauna were consistent with those on above-ground grasses, in which C:N ratios were greatly reduced by grazing, with this effect being the greatest for the NM + G treatment. In contrast, different grazing treatments had little effect on C:N ratio of soil. Furthermore, the traditional grazing method (mowing followed by seasonal grazing) may have less severe effects on some taxonomic groups than perennial grazing. Therefore, an appropriate management should aim to protect soil fauna and microbes in this area from over-grazing and against further degradation.