Mountain ecosystem, on the earth, has plenty of natural resources. In Himachal Pradesh all the rivers are snowfed and therefore rich in water resources. These resources have been supporting enough for the generation o...Mountain ecosystem, on the earth, has plenty of natural resources. In Himachal Pradesh all the rivers are snowfed and therefore rich in water resources. These resources have been supporting enough for the generation of electricity through introducing hydropower projects since the last decade However, every developmental activity has its own negative impacts on the surrounding environment. Due to the fragile nature of topography and delicacy of ecology of the Himalaya, it results in lot of disturbances because of high degree of human interferences like construction of major hydropower projects. The increased extent of geological hazards, such as landslides, rock fall and soil erosion, have mainly due to alike developmental interventions in the natural ecosystem. So understanding and analysing such impacts of the hydropower projects have mainly been on the environment in various forms but natural hazards have been frequent ones. The present study, therefore, focuses mainly on the Parbati Stage II (800 MW) and the Parbati Stage III (520 MW) hydropower projects; both of which fall within the Kullu district of Himachal Pradesh. Based on the perception survey of the local communities, the existing land use pattern, status of total acquired land of the residents by hydropower projects, frequent natural hazards and resultant loss to the local communities due to upcoming construction of hydropower projects surrounding to the Parbati Stage II and III have been analysed in the paper. Also, the preventive measures to mitigate these adverse impacts have been suggested to strengthen these projects in eco-friendly manner in the mountain context.展开更多
Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio ...Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio is also uneven in different seasons. Carbon gain and the response of water use efficiency(WUE) to annual and seasonal increases in temperature with or without CO_2 fertilization were simulated in Abies fabri using the atmospheric-vegetation interaction model(AVIM2). Four future climate scenarios(RCP2.6,RCP4.5,RCP6.0 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5(CMIP5) were selectively investigated. The results showed that warmer temperatures have negative effects on gross primary production(GPP) and net primary production(NPP) in growing seasons and positive effects in dormant seasons due to the variation in the leaf area index. Warmer temperatures tend to generate lower canopy WUE and higher ecosystem WUE in Abies fabri. However,warmer temperature together with rising CO_2 concentrations significantlyincrease the GPP and NPP in both growing and dormant seasons and enhance WUE in annual and dormant seasons because of the higher leaf area index(LAI) and soil temperature. The comparison of the simulated results with and without CO_2 fertilization shows that CO_2 has the potential to partially alleviate the adverse effects of climate warming on carbon gain and WUE in subalpine coniferous forests.展开更多
文摘Mountain ecosystem, on the earth, has plenty of natural resources. In Himachal Pradesh all the rivers are snowfed and therefore rich in water resources. These resources have been supporting enough for the generation of electricity through introducing hydropower projects since the last decade However, every developmental activity has its own negative impacts on the surrounding environment. Due to the fragile nature of topography and delicacy of ecology of the Himalaya, it results in lot of disturbances because of high degree of human interferences like construction of major hydropower projects. The increased extent of geological hazards, such as landslides, rock fall and soil erosion, have mainly due to alike developmental interventions in the natural ecosystem. So understanding and analysing such impacts of the hydropower projects have mainly been on the environment in various forms but natural hazards have been frequent ones. The present study, therefore, focuses mainly on the Parbati Stage II (800 MW) and the Parbati Stage III (520 MW) hydropower projects; both of which fall within the Kullu district of Himachal Pradesh. Based on the perception survey of the local communities, the existing land use pattern, status of total acquired land of the residents by hydropower projects, frequent natural hazards and resultant loss to the local communities due to upcoming construction of hydropower projects surrounding to the Parbati Stage II and III have been analysed in the paper. Also, the preventive measures to mitigate these adverse impacts have been suggested to strengthen these projects in eco-friendly manner in the mountain context.
基金supported by the Natural Science Foundation of China (No.41401044 and No.41310013)the key research projects of frontier sciences CAS (QYZDJ-SSW-DQC006)+1 种基金the Chinese Academy of Science (‘West Star’ project)the CAS/SAFEA international partnership program for creative research teams (KZZD-EW-TZ-06)
文摘Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio is also uneven in different seasons. Carbon gain and the response of water use efficiency(WUE) to annual and seasonal increases in temperature with or without CO_2 fertilization were simulated in Abies fabri using the atmospheric-vegetation interaction model(AVIM2). Four future climate scenarios(RCP2.6,RCP4.5,RCP6.0 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5(CMIP5) were selectively investigated. The results showed that warmer temperatures have negative effects on gross primary production(GPP) and net primary production(NPP) in growing seasons and positive effects in dormant seasons due to the variation in the leaf area index. Warmer temperatures tend to generate lower canopy WUE and higher ecosystem WUE in Abies fabri. However,warmer temperature together with rising CO_2 concentrations significantlyincrease the GPP and NPP in both growing and dormant seasons and enhance WUE in annual and dormant seasons because of the higher leaf area index(LAI) and soil temperature. The comparison of the simulated results with and without CO_2 fertilization shows that CO_2 has the potential to partially alleviate the adverse effects of climate warming on carbon gain and WUE in subalpine coniferous forests.