Several abiotic and biotic factors were investigated as possible predictors of local species richness in two sub-alpine grasslands of Jenna and Belles Mountains in Northern Greece.For species richness modelling a hier...Several abiotic and biotic factors were investigated as possible predictors of local species richness in two sub-alpine grasslands of Jenna and Belles Mountains in Northern Greece.For species richness modelling a hierarchical modelling framework based on generalized additive models was adopted.The two sub-alpine grasslands differed in aspect,altitude and soil parent material(volcanic origin,mostly trachyte,and andesite(TA) for Jenna and metamorphic rocks,mostly gneiss(G) for Belles).12 fenced squared plots,16 m2 each,were used per grassland,where soil properties,herbage production,species presence and cover of grasses,legumes and forbs were estimated.Mean herbage production was significantly affected by slope and altitude,soil K content and floristic composition as expressed by an ordination axis.Soil p H,floristic composition and average herbage production were significant predictors of forbs and total species richness.For the former,soil N content and for the latter the occurrence of Agrostis capillaris,were also included as significant terms in the predictive model.Thepredictors for grasses species richness were N content,having a positive effect,and average herbage production.In all cases higher species richness was predicted for intermediate values of average herbage production.Differential responses were found between forbs and grasses.The predictors of their species richness were different while for the case of the common predictor(N) the responses of the two groups were also different(grasses species numbers increase and forbs species numbers decreased with increasing N).Maximum species richness of grasses was observed at relatively low production levels while forbs species richness maximized at relatively high production levels.展开更多
Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soi...Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soil microbial community of this type of vegetation in response to environmental change. Using phospholipid fatty acids (PLFA), we investigated soil microbial community composition along an elevational gradient (3094-4131 m above sea level) on Mount Yajiageng, and we explored the impact of plant functional groups and soil chemistry on the soil microbial community. Except for Arbuscular Mycorrhizal fungi (AM fungi) biomarker 18:2ω6,9 increasing significantly, other biomarkers did not show a consistent trend with the elevational gradient. Microbial biomass quantified by total PLFAs did not show the elevational trend and had mean values ranging from 1.64 to 4.09 ktmol per g organic carbon (OC), which had the maximum value at the highest site. Bacterial PLFAs exhibited a similar trend with total PLFAs, and its mean values ranged from 0.82 to 1.81 μmol (g OC)-1. The bacterial to fungal biomass ratios had the minimum value at the highest site, which might be related to temperature and soil total nitrogen (TN). The ratios of Gram-negative to Gram-positive bacteria had a significantly negative correlation with soil TN and had the maximum value at the highest site. Leguminous plant coverage and soil TN explained 58% of the total variation in the soil microbial community and could achieve the same interpretation as the whole model. Other factors may influence the soil microbial community through interaction with leguminous plant coverage and soil TN. Soil chemistry and plant functional group composition in substantial amounts explained different parts of the variation within the soil microbial community, and the interaction between them had no impact on the soil microbial community maybe beeause long-term grazing greatly reduces litter. In sum, although there were obvious differences in soil microbial communities along the elevation gradient, there were no clear elevational trends found in general. Plant functional groups and soil chemistry respectively affect the different aspects of soil microbial community. Leguminous plant coverage and soil TN had important effects in shaping soil microbial community.展开更多
基金The Greek Ministry of Agriculture is gratefully acknowledged for their support
文摘Several abiotic and biotic factors were investigated as possible predictors of local species richness in two sub-alpine grasslands of Jenna and Belles Mountains in Northern Greece.For species richness modelling a hierarchical modelling framework based on generalized additive models was adopted.The two sub-alpine grasslands differed in aspect,altitude and soil parent material(volcanic origin,mostly trachyte,and andesite(TA) for Jenna and metamorphic rocks,mostly gneiss(G) for Belles).12 fenced squared plots,16 m2 each,were used per grassland,where soil properties,herbage production,species presence and cover of grasses,legumes and forbs were estimated.Mean herbage production was significantly affected by slope and altitude,soil K content and floristic composition as expressed by an ordination axis.Soil p H,floristic composition and average herbage production were significant predictors of forbs and total species richness.For the former,soil N content and for the latter the occurrence of Agrostis capillaris,were also included as significant terms in the predictive model.Thepredictors for grasses species richness were N content,having a positive effect,and average herbage production.In all cases higher species richness was predicted for intermediate values of average herbage production.Differential responses were found between forbs and grasses.The predictors of their species richness were different while for the case of the common predictor(N) the responses of the two groups were also different(grasses species numbers increase and forbs species numbers decreased with increasing N).Maximum species richness of grasses was observed at relatively low production levels while forbs species richness maximized at relatively high production levels.
基金supported by the CAS/SAFEA International Partnership Program for Creative Research Teams (KZZD-EW-TZ-06)
文摘Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soil microbial community of this type of vegetation in response to environmental change. Using phospholipid fatty acids (PLFA), we investigated soil microbial community composition along an elevational gradient (3094-4131 m above sea level) on Mount Yajiageng, and we explored the impact of plant functional groups and soil chemistry on the soil microbial community. Except for Arbuscular Mycorrhizal fungi (AM fungi) biomarker 18:2ω6,9 increasing significantly, other biomarkers did not show a consistent trend with the elevational gradient. Microbial biomass quantified by total PLFAs did not show the elevational trend and had mean values ranging from 1.64 to 4.09 ktmol per g organic carbon (OC), which had the maximum value at the highest site. Bacterial PLFAs exhibited a similar trend with total PLFAs, and its mean values ranged from 0.82 to 1.81 μmol (g OC)-1. The bacterial to fungal biomass ratios had the minimum value at the highest site, which might be related to temperature and soil total nitrogen (TN). The ratios of Gram-negative to Gram-positive bacteria had a significantly negative correlation with soil TN and had the maximum value at the highest site. Leguminous plant coverage and soil TN explained 58% of the total variation in the soil microbial community and could achieve the same interpretation as the whole model. Other factors may influence the soil microbial community through interaction with leguminous plant coverage and soil TN. Soil chemistry and plant functional group composition in substantial amounts explained different parts of the variation within the soil microbial community, and the interaction between them had no impact on the soil microbial community maybe beeause long-term grazing greatly reduces litter. In sum, although there were obvious differences in soil microbial communities along the elevation gradient, there were no clear elevational trends found in general. Plant functional groups and soil chemistry respectively affect the different aspects of soil microbial community. Leguminous plant coverage and soil TN had important effects in shaping soil microbial community.