[Objective] The aim was to compare the content changes between the non-structural carbohydrates(NSC)and the total nitrogen in various growing seasons,and to explore the response relationship between altitude and the...[Objective] The aim was to compare the content changes between the non-structural carbohydrates(NSC)and the total nitrogen in various growing seasons,and to explore the response relationship between altitude and the contents.[Method] Taking Quercus aquifolioides scrub which widely distributed in Zheduoshan in the west of Sichuan as the experimental objects,the changes between NSC and the toal nitrogen in various growing seasons at different altitude were studied.[Result] The results showed that the content of NSC in Quercus aquifolioides underground increased with the lift of elevation in the dormancy,but decreased in the early germination,growing period and growth stage.The content of NSC in the ground tissue changed non-linearly with increasing elevation.In addition,the total nitrogen of Quercus aquifolioides organizations was decreasing with increasing elevation in the dormant period,which did not change significantly in the other periods.This result implied that the content of NSC in Quercus aquifolioides underground was more sensitive to temperature.[Conclusion] The experiment laid basis for the exploration of the physical and ecological mechanism of underground plants adaptability to highland environment,their response to global climate changes and adjustment to high altitude ecological system.展开更多
The eastern margin of the Tibetan Plateau is marked by an extremely steep mountain front with relief of over 5 km. This topography,coupled with abundant Mesozoic thrusts within the margin,explains why tectonic maps of...The eastern margin of the Tibetan Plateau is marked by an extremely steep mountain front with relief of over 5 km. This topography,coupled with abundant Mesozoic thrusts within the margin,explains why tectonic maps of the India-Asia collision typically show the eastern margin as a major thrust zone. Actually,it does not like that. Field observations suggest that the margin is better characterized as a zone of NNE-directed dextral shear with extensive strike-slip faulting and secondary thrusting. The high relief and steep gradients are partially explained by erosional unloading of an elastic lithosphere;the pre-erosion inherited topography may be the inherited Mesozoic thrust belt landscape modified by a component of Cenozoic tectonic shortening.展开更多
Litter production, components and dynamics were investigated and forest floor litter was quantified throughout awhole year in three subalpine forests, dominated by tree species of spruce (SF), fir (FF) and birch (BF),...Litter production, components and dynamics were investigated and forest floor litter was quantified throughout awhole year in three subalpine forests, dominated by tree species of spruce (SF), fir (FF) and birch (BF), in WesternSichuan, China, in order to understand the key factors that influenced litter production and dynamics. Litterfall in thethree forests consisted mainly of leaves, woody litter, reproductive organs and moss. Contribution of leaf litter to thetotal litterfall was significantly (P < 0.05) greater than that of woody litter, reproductive organs or moss. Regardlessof the stands, litterfall exhibited a marked monthly variation with the maximum litterfall peaks occurring in October,with smaller peaks occurring in February for SF and FF, and May for BF. The analysis indicated that tree species,stand density, leaf area index (LAI), stand basal area and stand age were the key factors determining litter production.Meanwhile tree species and phenology controlled the litter dynamics, with wind and snow modifying the litter componentsand dynamics.展开更多
The topographic maps of 1:50,000 scales,aerial photographs taken in 1966,one Landsat image taken in 1999,and SRTM data from 2000 were used to quantify the losses in area and volume of the glaciers on the Su-lo Mountai...The topographic maps of 1:50,000 scales,aerial photographs taken in 1966,one Landsat image taken in 1999,and SRTM data from 2000 were used to quantify the losses in area and volume of the glaciers on the Su-lo Mountain,in the northeastern Tibetan Plateau,China in the past 30 years.The total glacier area decreased from 492.9km2 in 1966 to 458.2km2 in 1999.The volume loss of the studied glaciers reached 1.4 km3 from 1966 to 2000.This agrees with documented changes in other mountain glaciers of the whole Tibetan Plateau.展开更多
The distribution of borehole temperature at four high-altitude alpine glaciers was investigated. The result shows that the temperature ranges from -13.4℃ to -1.84℃, indicating the glaciers are cold throughout the bo...The distribution of borehole temperature at four high-altitude alpine glaciers was investigated. The result shows that the temperature ranges from -13.4℃ to -1.84℃, indicating the glaciers are cold throughout the boreholes. The negative gradient (i.e., the temperature decreasing with the increasing of depth) due to the advection of ice and climate warming, and the negative gradient moving downwards relates to climate warming, are probably responsible for the observed minimum temperature moving to lower depth in boreholes of the Gyabrag glacier and Miaoergou glacier compared to the previously investigated continental ice core borehole temperature in West China. The borehole temperature at 10m depth ranges from -8.0℃ in the Gyabrag glacier in the central Himalayas to -12.9℃ in the Tsabagarav glacier in the Altai range. The borehole temperature at 10 m depth is 3-4 degrees higher than the calculated mean annual air temperature on the surface of the glaciers and the higher 10 m depth temperature is mainly caused by the production of latent heat due to melt-water percolation and refreezing. The basal temperature is far below the melting point, indicating that the glaciers are frozen to bedrock. The very low temperature gradients near the bedrock suggest that the influence of geothermal flux and ice flow on basal temperature is very weak. The low temperature and small velocity of ice flow of glaciers are beneficial for preservation of the chemical and isotopic information in ice cores.展开更多
基金Supported by National Natural Science Fund(30872017)China Science Academy Knowledge Innovation Engineering Project Important Direction Program(KZCX2-YW-331-3,KSCX2-YW-N-066)Central University Basic Science Research Operation Special Fund(XDJK2009C110)~~
文摘[Objective] The aim was to compare the content changes between the non-structural carbohydrates(NSC)and the total nitrogen in various growing seasons,and to explore the response relationship between altitude and the contents.[Method] Taking Quercus aquifolioides scrub which widely distributed in Zheduoshan in the west of Sichuan as the experimental objects,the changes between NSC and the toal nitrogen in various growing seasons at different altitude were studied.[Result] The results showed that the content of NSC in Quercus aquifolioides underground increased with the lift of elevation in the dormancy,but decreased in the early germination,growing period and growth stage.The content of NSC in the ground tissue changed non-linearly with increasing elevation.In addition,the total nitrogen of Quercus aquifolioides organizations was decreasing with increasing elevation in the dormant period,which did not change significantly in the other periods.This result implied that the content of NSC in Quercus aquifolioides underground was more sensitive to temperature.[Conclusion] The experiment laid basis for the exploration of the physical and ecological mechanism of underground plants adaptability to highland environment,their response to global climate changes and adjustment to high altitude ecological system.
基金supported by the NSF(EAR 9803484)to M.EllisA.Densmore,and NSFC(40372084)SZD0408 and EYTP to Li Yong
文摘The eastern margin of the Tibetan Plateau is marked by an extremely steep mountain front with relief of over 5 km. This topography,coupled with abundant Mesozoic thrusts within the margin,explains why tectonic maps of the India-Asia collision typically show the eastern margin as a major thrust zone. Actually,it does not like that. Field observations suggest that the margin is better characterized as a zone of NNE-directed dextral shear with extensive strike-slip faulting and secondary thrusting. The high relief and steep gradients are partially explained by erosional unloading of an elastic lithosphere;the pre-erosion inherited topography may be the inherited Mesozoic thrust belt landscape modified by a component of Cenozoic tectonic shortening.
基金the National Natural Science Foundation of China (Nos. 30471378, 90202010 and 30211130504),and the Program of 100 Distinguished Young Scientists of the Chinese Academy of Sciences.
文摘Litter production, components and dynamics were investigated and forest floor litter was quantified throughout awhole year in three subalpine forests, dominated by tree species of spruce (SF), fir (FF) and birch (BF), in WesternSichuan, China, in order to understand the key factors that influenced litter production and dynamics. Litterfall in thethree forests consisted mainly of leaves, woody litter, reproductive organs and moss. Contribution of leaf litter to thetotal litterfall was significantly (P < 0.05) greater than that of woody litter, reproductive organs or moss. Regardlessof the stands, litterfall exhibited a marked monthly variation with the maximum litterfall peaks occurring in October,with smaller peaks occurring in February for SF and FF, and May for BF. The analysis indicated that tree species,stand density, leaf area index (LAI), stand basal area and stand age were the key factors determining litter production.Meanwhile tree species and phenology controlled the litter dynamics, with wind and snow modifying the litter componentsand dynamics.
基金supported by the National Natural Science Foundation of China(40576001 and 40825017)the Chinese Academy of Sciences(KZCX3SW344 and 100 Talents Project)+1 种基金the Korean Research Council of Public Science and Technology(PP07010)the National Key Technology R&D Program(2006BAB18B01).
文摘The topographic maps of 1:50,000 scales,aerial photographs taken in 1966,one Landsat image taken in 1999,and SRTM data from 2000 were used to quantify the losses in area and volume of the glaciers on the Su-lo Mountain,in the northeastern Tibetan Plateau,China in the past 30 years.The total glacier area decreased from 492.9km2 in 1966 to 458.2km2 in 1999.The volume loss of the studied glaciers reached 1.4 km3 from 1966 to 2000.This agrees with documented changes in other mountain glaciers of the whole Tibetan Plateau.
基金funded by the National Natural Science Foundation of China (Grant No. 40825017)the Chinese Academy of Sciences(Grant No. KZCX3-SW-344 and 100 Talents Project)
文摘The distribution of borehole temperature at four high-altitude alpine glaciers was investigated. The result shows that the temperature ranges from -13.4℃ to -1.84℃, indicating the glaciers are cold throughout the boreholes. The negative gradient (i.e., the temperature decreasing with the increasing of depth) due to the advection of ice and climate warming, and the negative gradient moving downwards relates to climate warming, are probably responsible for the observed minimum temperature moving to lower depth in boreholes of the Gyabrag glacier and Miaoergou glacier compared to the previously investigated continental ice core borehole temperature in West China. The borehole temperature at 10m depth ranges from -8.0℃ in the Gyabrag glacier in the central Himalayas to -12.9℃ in the Tsabagarav glacier in the Altai range. The borehole temperature at 10 m depth is 3-4 degrees higher than the calculated mean annual air temperature on the surface of the glaciers and the higher 10 m depth temperature is mainly caused by the production of latent heat due to melt-water percolation and refreezing. The basal temperature is far below the melting point, indicating that the glaciers are frozen to bedrock. The very low temperature gradients near the bedrock suggest that the influence of geothermal flux and ice flow on basal temperature is very weak. The low temperature and small velocity of ice flow of glaciers are beneficial for preservation of the chemical and isotopic information in ice cores.