The study of human-environment relationships in mountain areas is important for both theoretical and practical reasons, as many mountain areas suffer similar problems, such as depopulation, unemployment and natural ha...The study of human-environment relationships in mountain areas is important for both theoretical and practical reasons, as many mountain areas suffer similar problems, such as depopulation, unemployment and natural hazards. Medium mountains constitute a special case within mountains, because they are more populated but less attractive as tourist destinations than high mountains. In this context, the Apuseni Mts (Romania) are considered as a ease study. In this paper, we apply GIS-based, quantitative methods to characterize the strength and dynamics of human-environment interactions, taking into consideration some environmental factors (elevation, relative height, slope, river distance, lithology, land cover, natural attractions) as well as historical population and recent tourism data. We found that population density has strong (r2〉0.8) relationships with all relief factors (elevation, relative height, slope, river distance), and that best-fit functions are nonlinear. We outlined the varying demographic scenarios by elevation zones and interpreted the historically switching sign of population change versus elevation relationship. We demonstrated that lithology also has an impact on the spatial distribution of population, although it is not independent from the relief effect. The land cover of the mainly cultural landscape is very strongly correlated with relief parameters (especially slope), which suggests good adaptation. We pointed out the dominance of karst objects in the natural tourism potential of the Apuseni Mts and also explored further components of real tourism (spas, heritage, towns). Finally, we concluded that the environmental settings investigated do in fact constrain the spatial framework of society, but soeio-economic changes in history can be explained from the side of society, which conforms to the theory of cultural possibilism.展开更多
3D ground-penetrating radar has been widely used in urban road underground disease detection due to its nondestructive,efficient,and intuitive results.However,the 3D imaging of the underground target body presents the...3D ground-penetrating radar has been widely used in urban road underground disease detection due to its nondestructive,efficient,and intuitive results.However,the 3D imaging of the underground target body presents the edge plate phenomenon due to the space between the 3D radar array antennas.Consequently,direct 3D imaging using detection results cannot reflect underground spatial distribution characteristics.Due to the wide-beam polarization of the ground-penetrating radar antenna,the emission of electromagnetic waves with a specific width decreases the strong middle energy on both sides gradually.Therefore,a bicubic high-precision 3D target body slice-imaging fitting algorithm with changing trend characteristics is constructed by combining the subsurface target characteristics with the changing spatial morphology trends.Using the wide-angle polarization antenna’s characteristics in the algorithm to build the trend factor between the measurement lines,the target body change trend and the edge detail portrayal achieve a 3D ground-penetrating radar-detection target high-precision fitting.Compared with other traditional fitting techniques,the fitting error is small.This paper conducts experiments and analyses on GpaMax 3D forward modeling and 3D ground-penetrating measured radar data.The experiments show that the improved bicubic fitting algorithm can eff ectively improve the accuracy of underground target slice imaging and the 3D ground-penetrating radar’s anomaly interpretation.展开更多
Compared with Gaussian wind loads, there is a higher probability of strong suction fluctuations occurrence for non-Gaussian wind pressures. These instantaneous and intermittent fluctuations are the initial cause of lo...Compared with Gaussian wind loads, there is a higher probability of strong suction fluctuations occurrence for non-Gaussian wind pressures. These instantaneous and intermittent fluctuations are the initial cause of local damage to roof structures, par- ticularly at the edges and comers of long-span roofs. Thus, comparative errors would occur if a Gaussian model is used to de- scribe a non-Gaussian wind load, and structural security would not be guaranteed. This paper presents a simplified method based on the inverse fast Fourier transform (IFFT), in which the amplitude spectrum is established via a target power spectrum. Also, the phase spectrum is constructed by introducing the exponential peak generation (EPG) model. Finally, a random pro- cess can be generated via IFFT that meets the specified power spectral density (PSD), skewness and kurtosis. In contrast to a wind tunnel experiment, this method can avoid the coupled relation between the non-Gaussian and the power spectrum char- acteristics, and lead to the desired computational efficiency. Its fitting accuracy is not affected by phase spectrum. Moreover, the fitting precision of the kurtosis and PSD parameters can be guaranteed. In a few cases, the fitting precision of the skewness parameter is fairly poor, but kurtosis is more important than skewness in the description of the non-Gaussian characteristics. Above all, this algorithm is simple and stable and would be an effective method to simulate a non-Gaussian signal.展开更多
基金supported by the Hungarian National Science Foundation,OTKA 104811 projectsupported by the János Bolyai Scolarship of the Hungarian Academy of Sciences
文摘The study of human-environment relationships in mountain areas is important for both theoretical and practical reasons, as many mountain areas suffer similar problems, such as depopulation, unemployment and natural hazards. Medium mountains constitute a special case within mountains, because they are more populated but less attractive as tourist destinations than high mountains. In this context, the Apuseni Mts (Romania) are considered as a ease study. In this paper, we apply GIS-based, quantitative methods to characterize the strength and dynamics of human-environment interactions, taking into consideration some environmental factors (elevation, relative height, slope, river distance, lithology, land cover, natural attractions) as well as historical population and recent tourism data. We found that population density has strong (r2〉0.8) relationships with all relief factors (elevation, relative height, slope, river distance), and that best-fit functions are nonlinear. We outlined the varying demographic scenarios by elevation zones and interpreted the historically switching sign of population change versus elevation relationship. We demonstrated that lithology also has an impact on the spatial distribution of population, although it is not independent from the relief effect. The land cover of the mainly cultural landscape is very strongly correlated with relief parameters (especially slope), which suggests good adaptation. We pointed out the dominance of karst objects in the natural tourism potential of the Apuseni Mts and also explored further components of real tourism (spas, heritage, towns). Finally, we concluded that the environmental settings investigated do in fact constrain the spatial framework of society, but soeio-economic changes in history can be explained from the side of society, which conforms to the theory of cultural possibilism.
基金supported by The National Key Research and Development Program of China (2021YFC3090304)The Fundamental Research Funds for the Central Universities,China University of Mining and Technology-Beijing (8000150A073).
文摘3D ground-penetrating radar has been widely used in urban road underground disease detection due to its nondestructive,efficient,and intuitive results.However,the 3D imaging of the underground target body presents the edge plate phenomenon due to the space between the 3D radar array antennas.Consequently,direct 3D imaging using detection results cannot reflect underground spatial distribution characteristics.Due to the wide-beam polarization of the ground-penetrating radar antenna,the emission of electromagnetic waves with a specific width decreases the strong middle energy on both sides gradually.Therefore,a bicubic high-precision 3D target body slice-imaging fitting algorithm with changing trend characteristics is constructed by combining the subsurface target characteristics with the changing spatial morphology trends.Using the wide-angle polarization antenna’s characteristics in the algorithm to build the trend factor between the measurement lines,the target body change trend and the edge detail portrayal achieve a 3D ground-penetrating radar-detection target high-precision fitting.Compared with other traditional fitting techniques,the fitting error is small.This paper conducts experiments and analyses on GpaMax 3D forward modeling and 3D ground-penetrating measured radar data.The experiments show that the improved bicubic fitting algorithm can eff ectively improve the accuracy of underground target slice imaging and the 3D ground-penetrating radar’s anomaly interpretation.
基金supported by the National Natural Science Fund for Distinguished Young Scholars (Grant No. 51125031)
文摘Compared with Gaussian wind loads, there is a higher probability of strong suction fluctuations occurrence for non-Gaussian wind pressures. These instantaneous and intermittent fluctuations are the initial cause of local damage to roof structures, par- ticularly at the edges and comers of long-span roofs. Thus, comparative errors would occur if a Gaussian model is used to de- scribe a non-Gaussian wind load, and structural security would not be guaranteed. This paper presents a simplified method based on the inverse fast Fourier transform (IFFT), in which the amplitude spectrum is established via a target power spectrum. Also, the phase spectrum is constructed by introducing the exponential peak generation (EPG) model. Finally, a random pro- cess can be generated via IFFT that meets the specified power spectral density (PSD), skewness and kurtosis. In contrast to a wind tunnel experiment, this method can avoid the coupled relation between the non-Gaussian and the power spectrum char- acteristics, and lead to the desired computational efficiency. Its fitting accuracy is not affected by phase spectrum. Moreover, the fitting precision of the kurtosis and PSD parameters can be guaranteed. In a few cases, the fitting precision of the skewness parameter is fairly poor, but kurtosis is more important than skewness in the description of the non-Gaussian characteristics. Above all, this algorithm is simple and stable and would be an effective method to simulate a non-Gaussian signal.