期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
工业机器人在两进两出码垛生产线中的应用
1
作者 左怀山 《机电信息》 2018年第15期48-49,51,共3页
通过对工业机器人两进两出码垛生产线的设计分析,概要地阐述了在多进多出码垛生产线中使用工业机器人替代一般高位码垛机的可行性和优势。使用工业机器人进行码垛作业,可以提高流水线柔性工作能力,便于企业更新换代与发展。
关键词 工业机器人 码垛 高度柔性
下载PDF
A Flexible Valve Based Piezoelectric Pump for High Viscosity Cooling Liquid Transportation 被引量:2
2
作者 LI Kai LIU Jiaming +3 位作者 ZHANG Quan ZHANG Jianhui HUANG Jun WANG Yuan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第6期993-1002,共10页
A piezoelectric pump with flexible valve has been developed to pump high viscosity cooling liquid in the nanosats thermal control system. The structure of the flexible valve is designed according to the characteristic... A piezoelectric pump with flexible valve has been developed to pump high viscosity cooling liquid in the nanosats thermal control system. The structure of the flexible valve is designed according to the characteristics of the human aortic shape with the aim to simulate the bionic pumping function of the human heart. Dynamic stress-strain features of the flexible valve are analyzed by the finite element method,and the results show that the proposed flexible valve is suitable and functional for the piezoelectric pump. Then the cylinder and diffuser/nozzle piezoelectric pumps based on flexible valves have been developed and fabricated. Experimental results of the output performance indicate that the maximum flow rate of the cylinder piezoelectric pump with flexible valve is 15.38 mL/min,170.77% higher than the diffuser/nozzle piezoelectric pump with flexible valve. The ability of the cylinder piezoelectric pump with flexible valve for transmitting high viscosity liquid has been validated. The piezoelectric pump with flexible valve has potential applications in the nanosats thermal control system. 展开更多
关键词 piezoelectric pump high viscosity liquid flexible valve cut-off performance pumping performance
下载PDF
Compact self-standing layered film assembled by V2O5·nH2O/CNTs 2D/1D composites for high volumetric capacitance flexible supercapacitors 被引量:5
3
作者 Kai Guo Yiju Li +2 位作者 Chong Li Neng Yu Huiqiao Li 《Science China Materials》 SCIE EI CSCD 2019年第7期936-946,共11页
Flexible supercapacitors (SCs) are attractive energy storage devices for wearable electronics, but their applications are hindered by their low volumetric energy densities. Two dimensional (2D) non-carbon nanomaterial... Flexible supercapacitors (SCs) are attractive energy storage devices for wearable electronics, but their applications are hindered by their low volumetric energy densities. Two dimensional (2D) non-carbon nanomaterials are the most promising pseudocapacitive materials for high volumetric capacitance electrodes. However, they are poorly conductive and prone to self-stacking, which results in unsatisfactory electrochemical performance. In this work, large-scale V2O5·nH2O ultrathin nanosheets are synthesized by a facile and scalable method and transformed into layered and compact composite films with one-dimensional carbon nanotubes (CNTs). The self-standing films show an optimized volumetric capacitance of 521.0Fcm^-3 with only 10 wt% of CNTs, which is attributed to dramatically enhanced electrical conductivity beyond the electrical percolation threshold, high dispersion of pseudocapacitive V2O5·nH2O nanosheets, and high mass density of the films. All-solid-state flexible SCs made of V2O5·nH2O/CNTs films show a maximum energy density of 17.4WhL^-1. 展开更多
关键词 flexible supercapacitors volum etric capacitance two - dimensional nanosheets vanadium pentoxide layered structure
原文传递
Magnetically induced micropillar arrays for an ultrasensitive flexible sensor with a wireless recharging system 被引量:3
4
作者 Libo Gao Ying Han +9 位作者 James Utama Surjadi Ke Cao Wenzhao Zhou Hongcheng Xu Xinkang Hu Mingzhi Wang Kangqi Fan Yuejiao Wang Weidong Wang Horacio D.Espinosa 《Science China Materials》 SCIE EI CAS CSCD 2021年第8期1977-1988,共12页
Significant efforts have been devoted to enhancing the sensitivity and working range of flexible pressure sensors to improve the precise measurement of subtle variations in pressure over a wide detection spectrum. How... Significant efforts have been devoted to enhancing the sensitivity and working range of flexible pressure sensors to improve the precise measurement of subtle variations in pressure over a wide detection spectrum. However,achieving sensitivities exceeding 1000 kPa^(-1) while maintaining a pressure working range over 100 kPa is still challenging because of the limited intrinsic properties of soft matrix materials. Here, we report a magnetic field-induced porous elastomer with micropillar arrays(MPAs) as sensing materials and a well-patterned nickel fabric as an electrode. The developed sensor exhibits an ultrahigh sensitivity of 10,268 kPa^(-1)(0.6–170 kPa) with a minimum detection pressure of 0.25 Pa and a fast response time of 3 ms because of the unique structure of the MPAs and the textured morphology of the electrode. The porous elastomer provides an extended working range of up to 500 kPa with long-time durability. The sophisticated sensor system coupled with an integrated wireless recharging system comprising a flexible supercapacitor and inductive coils for transmission achieves excellent performance. Thus, a diverse range of practical applications requiring a low-to-high pressure range sensing can be developed. Our strategy, which combines a microstructured high-performance sensor device with a wireless recharging system, provides a basis for creating next-generation flexible electronics. 展开更多
关键词 high sensitivity pressure sensor SUPERCAPACITOR wireless recharging flexible electronics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部