期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
节理压缩闭合试验前后表面形态特征变化分析 被引量:3
1
作者 王卫华 李坤 +1 位作者 严哲 唐修 《黄金科学技术》 CSCD 2016年第6期84-89,共6页
岩石节理表面形貌对于岩石的力学性质具有重要的影响。为了研究节理表面形貌在法向压缩作用下的变化规律,对节理试样进行了压缩闭合试验。运用三维高精度激光形貌仪(Talysurf CLI 2000)对试验前后节理表面分别进行扫描,获得了二维和三... 岩石节理表面形貌对于岩石的力学性质具有重要的影响。为了研究节理表面形貌在法向压缩作用下的变化规律,对节理试样进行了压缩闭合试验。运用三维高精度激光形貌仪(Talysurf CLI 2000)对试验前后节理表面分别进行扫描,获得了二维和三维形貌特征图,并选取节理表面最大峰高(S_p)、表面最大高度(S_z)、表面最大谷深(S_v)、峰度系数(S_(ku))、偏斜度系数(S_(sk))、均方根高度(S_q)和算术平均高度(S_a)共7个表面形貌高度特征参数进行分析。研究发现:S_p、S_(sk)、S_k在法向应力的作用下有所减小,但是减幅均较小;S_v在压缩闭合试验后减小明显;S_z变化规律类似;S_a和S_q在压缩闭合后基本呈增大趋势。由此可见,节理表面形貌对节理压缩闭合曲线有明显的影响。 展开更多
关键词 岩石节理形貌 压缩闭合试验 高度特征参数 变化规律
下载PDF
加载速率对砂岩抗拉强度的影响机制 被引量:16
2
作者 邓华锋 王晨玺杰 +3 位作者 李建林 张吟钗 王伟 张恒宾 《岩土力学》 EI CAS CSCD 北大核心 2018年第S1期79-88,共10页
为研究加载速率对砂岩抗拉强度的影响效应及影响机制,设计开展5种加载速率的劈裂试验,综合分析抗拉强度、破坏特征、能量参数和劈裂面微观形貌变化规律及相关性。结果表明,(1)随着加载速率增大,砂岩劈裂抗拉强度逐渐增大,总体呈现先陡... 为研究加载速率对砂岩抗拉强度的影响效应及影响机制,设计开展5种加载速率的劈裂试验,综合分析抗拉强度、破坏特征、能量参数和劈裂面微观形貌变化规律及相关性。结果表明,(1)随着加载速率增大,砂岩劈裂抗拉强度逐渐增大,总体呈现先陡后缓的趋势,加载速率在0.01~0.10 k N/s范围内时抗拉强度增长迅速,0.10~1.00 k N/s范围内时抗拉强度增长趋势渐缓;(2)随着加载速率的增大,岩样吸收的总能量增大,弹性应变能占总能量的比值逐渐增大,耗散能占总能量的比值逐渐减小,加载至破坏时裂纹扩展形成宏观劈裂面的时间呈数量级减小,达到峰值应力时弹性应变能的释放,导致岩样破坏的突发性增强,使得劈裂面形貌特征在宏观和微观上逐渐变得复杂,对应抗拉强度逐渐增大;(3)在岩石劈裂试验过程中加载速率、能量参数、劈裂面形貌特征与抗拉强度密切相关,加载速率影响加载过程中能量的总量与分配,能量参数的变化直接影响岩样的破坏过程及劈裂面的形貌特征,最后宏观上表现为抗拉强度的差异。文中相关分析方法和思路可为类似试验提供较好的参考。 展开更多
关键词 加载速率 劈裂 微观形貌 高度特征参数 纹理特征参数 能量
下载PDF
Morphological parameters of both surfaces of coupled joint 被引量:1
3
作者 范祥 曹平 +1 位作者 黄雪姣 陈瑜 《Journal of Central South University》 SCIE EI CAS 2013年第3期776-785,共10页
Twenty one joints were made with Brazilian tests and each surface was scanned by the Talysurf CLI 2000. Morphological characteristics of joint surface were quantified by statistical and textural parameters. By the con... Twenty one joints were made with Brazilian tests and each surface was scanned by the Talysurf CLI 2000. Morphological characteristics of joint surface were quantified by statistical and textural parameters. By the contrast of these parameters between both sides of each coupled joint, the following conclusions are drawn. The upper and lower surfaces of coupled joints have approximately equal values of Sp(maximum height of joint surface), Sa(arithmetic mean height of joint surface) and Sq(root mean square height of joint surface), but the Ssk(skewness of the height distribution of joint surface) values of the two surfaces of a coupled joint are different, one is positive while the other is negative. The Saj(auto-correlation length) parameter values of both surfaces of each coupled joint are quite close, and the S^(texture aspect ratio) values have the same situation to the Sal parameter, but the same parameters of different surfaces have big differences which illustrates its own characteristics of each joint. The two surfaces of each coupled joint have similar values of θp (mean profile angle) which can be used to deduce the value of θp each other. 展开更多
关键词 coupled joint morphology statistical parameter textural parameter profile mean angle envelop area
下载PDF
基于BP神经网络方法研究岩石节理形貌粗糙度系数 被引量:3
4
作者 王卫华 李坤 +1 位作者 严哲 唐修 《世界科技研究与发展》 CSCD 2016年第3期518-521,共4页
岩石节理粗糙度系数(JRC)是研究岩石力学性质的重要参数。为了更准确地描述这一参数,本文基于人工神经网络的原理,提出一种研究JRC的新方法——BP神经网络预测法。选取节理表面最大峰高S_p、表面最大高度S_z、表面最大谷深S_v、峰度系数... 岩石节理粗糙度系数(JRC)是研究岩石力学性质的重要参数。为了更准确地描述这一参数,本文基于人工神经网络的原理,提出一种研究JRC的新方法——BP神经网络预测法。选取节理表面最大峰高S_p、表面最大高度S_z、表面最大谷深S_v、峰度系数S_(ku)、偏斜度系数S_(sk)、均方根高度S_q、算术平均高度S_a7个表面形貌高度特征参数作为网络输入,剖面线分维值和JRC作为网络输出,以此为基础构建网络模型,并对10组实测数据进行了预测验证。结果表明:该方法误差很小,具有很高的预测精度,可为进一步的研究提供新的思路和方法。 展开更多
关键词 节理形貌 粗糙度系数 BP神经网络 高度特征参数 参数预测 误差
原文传递
A topographic parameter inversion method based on laser altimetry 被引量:2
5
作者 HUANG ChunMing ZHANG ShaoDong CHEN Xi 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第5期1273-1280,共8页
A topographic parameter inversion method based on laser altimetry is developed in this paper, which can be used to deduce the surface vertical profile and retrieve the topographic parameters within the laser footprint... A topographic parameter inversion method based on laser altimetry is developed in this paper, which can be used to deduce the surface vertical profile and retrieve the topographic parameters within the laser footprints by analyzing and simulating return waveforms. This method comprises three steps. The first step is to build the numerical models for the whole measuring procedure of laser altimetry, construct digital elevation models for surfaces with different topographic parameters, and calculate return waveforms. The second step is to analyze the simulated return waveforms to obtain their characteristics parameters, summarize the effects of the topographic parameter variations on the characteristic parameters of simulated return waveforms, and analyze the observed return waveforms of laser altimeters to acquire their characteristic parameters at the same time. The last step is to match the characteristic parameters of the simulated and observed return waveforms, and deduce the topographic parameters within the laser footprint. This method can be used to retrieve the topographic parameters within the laser footprint from the observed return waveforms of spaceborne laser altimeters and to get knowledge about the surface altitude distribution within the laser footprint other than only getting the height of the surface encountered firstly by the laser beam, which extends laser altimeters' function and makes them more like radars. 展开更多
关键词 Laser altimetry return waveform simulation Gaussian fitting topographic parameter inversion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部