期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
微细钢纤维对高弹性模量混凝土力学性能的影响 被引量:2
1
作者 唐延丰 李庚英 +1 位作者 王林彬 张敏 《硅酸盐通报》 CAS 北大核心 2022年第12期4225-4233,共9页
基于修正的Furnas堆积模型和骨料紧密堆积试验设计了一种高弹性模量混凝土,并利用微细钢纤维改善高弹性模量混凝土的韧性,研究了钢纤维体积掺量对骨料紧密堆积状态下混凝土流动性能、强度、弹性模量及弯曲韧性的影响规律。结果表明:采... 基于修正的Furnas堆积模型和骨料紧密堆积试验设计了一种高弹性模量混凝土,并利用微细钢纤维改善高弹性模量混凝土的韧性,研究了钢纤维体积掺量对骨料紧密堆积状态下混凝土流动性能、强度、弹性模量及弯曲韧性的影响规律。结果表明:采用紧密堆积骨料和适量微细钢纤维可以构筑高弹性模量韧性混凝土,其静弹性模量和动弹性模量最高分别可达50.15 GPa和53.23 GPa,断裂能可达5 680.45 N/m,残余弯曲韧度比从0增加到0.43;高弹性模量混凝土的流动性能随着钢纤维掺量的增加而降低,抗折强度、弹性模量及弯曲韧性则均随着钢纤维掺量的增加而增加,混凝土的抗压强度随着钢纤维掺量增加先增加后降低。在骨料紧密堆积状态下,综合考虑流动性能、力学性能和工程经济性,高弹性模量混凝土中微细钢纤维的合理掺量为0.4%(体积分数)。 展开更多
关键词 高弹性模量混凝土 微细钢纤维 Furnas模型 堆积密度 弹性模量 断裂韧性
下载PDF
Freezing and Thawing Durability of Ultra High Strength Concrete
2
作者 Jesus Muro-Villanueva Craig M. Newtson +2 位作者 Brad D. Weldon David V. Jauregui Srinivas Allena 《Journal of Civil Engineering and Architecture》 2013年第8期907-915,共9页
Resistance to freezing and thawing of two UHSC (ultra high strength concrete) mixtures was evaluated in accordance with ASTM C 666 Procedure A. The two mixtures (plain and fiber reinforced) were developed using ma... Resistance to freezing and thawing of two UHSC (ultra high strength concrete) mixtures was evaluated in accordance with ASTM C 666 Procedure A. The two mixtures (plain and fiber reinforced) were developed using materials local to southern New Mexico, USA. Three different curing regimens were investigated for the mixture with fibers and one curing regimen was studied for the mixture without fibers. All curing regimens included 24 h of ambient curing followed by four days of wet curing at 50 ℃, and then two days dry curing at 200 ℃. At an age of seven days, one batch of fiber reinforced specimens was air cured at ambient conditions for the following six days and then placed in a water bath at 4.4 ℃ for 24 h prior to initiating freezing and thawing cycles. The second batch was air cured from day seven to day 12, and then wet cured for one day at 23 ℃ prior to being placed in the 4.4 ℃ water bath. The final batch was wet cured at 23 ℃ from the seventh day to an age of 13 days and then placed in the 4.4 ℃ water bath. The mixture with no fibers was air cured from the seventh day to an age of 12 days and then wet cured for one day at 23 ℃ prior to being placed in the 4.4 ℃ water bath. Higher moisture levels during curing produced greater initial dynamic elastic modulus values and durability factors at the end of the freezing and thawing tests, with the greatest durability factor being 87.5. Steel fibers were observed to improve both compressive strength and durability factor for UHSC. 展开更多
关键词 Ultra high strength freezing and thawing DURABILITY dynamic elastic modulus quality factor.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部