Recent studies have shown that major nominally anhydrous minerals in the Earth's mantle, such as olivine, pyroxene and garnet, can incorporate considerable amounts of water as structurally bound hydroxyl. Even a s...Recent studies have shown that major nominally anhydrous minerals in the Earth's mantle, such as olivine, pyroxene and garnet, can incorporate considerable amounts of water as structurally bound hydroxyl. Even a small amount of water is present in mantle minerals, it can strongly affect a number of physical properties, including density, sound velocity, melting temperature, and electrical conductivities. The presence of water can also influence the dynamic behavior, lead to lateral velocity heterogeneities, and affect the material circulation of the Earth's deep interior. In particular, seismic studies have reported the existence of low-velocity zones in various locations of the Earth's upper mantle and transition zone, which has been expected to be associated with the presence of water in the region. In the past two decades, the effect of water on the elasticity and sound velocities of minerals at relevant pressure-temperature(P-T) conditions of the Earth's mantle attracted extensive interests. Combining the high P-T experimental and theoretical mineralogical results with seismic observations provides crucial constraints on the distribution of water in the Earth's mantle. In this study, we summarize recent experimental and theoretical mineral physics results on how water affects the elasticity and sound velocity of nominally anhydrous minerals in the Earth's mantle, which aims to provide new insights into the effect of hydration on the density and velocity profile of the Earth's mantle, which are of particular importance in understanding of water distribution in the region.展开更多
Stretchable ionic conductors with high transparency and excellent resilience are highly desired for flexible electronics,but traditional ionic conductive hydrogels are easy to dry and freeze.Herein,a newly hybrid cros...Stretchable ionic conductors with high transparency and excellent resilience are highly desired for flexible electronics,but traditional ionic conductive hydrogels are easy to dry and freeze.Herein,a newly hybrid crosslinking strategy is presented for preparing a stretchable and transparent hydrogel by using sodium alginate(SA)and acrylamide based on the unique physically and covalently hybrid crosslinking mechanism,which is transformed into organohydrogel by simple solvent replacement.Due to the combination of hybrid crosslinking double network and hydrogen bond interactions introduced by the glycerin-water binary solvent,the SA-poly(acrylamide)-organohydrogel(SPOH)demonstrates excellent anti-freezing(-20℃)property,stability(>2 days),transparency,stretchability(~1600%)and high ionic conductivity(17.1 mS cm^(-1)).Thus,a triboelectric nanogenerator made from SPOH(O-TENG)shows an instantaneous peak power density of 262 mW m^(-2)at a load resistance of 10 MΩand efficiently harvests biomechanical energy to drive an electronic watch and light-emitting diode.Moreover,The O-TENG exhibits favorable long-term stability(2 weeks)and temperature tolerance(-20℃).In addition,the raw materials can be prepared into SPOH fibers by a simple tubular mold method,exhibiting high transparency,which can be used for laser transmission.The various abilities of the SPOH promise the application of energy harvesting and laser transmission for wearable electronics and biomedical field.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41590621 & 41473058)the Fundamental Research Funds for the Central Universities of China (Grant No. WK2080000097)
文摘Recent studies have shown that major nominally anhydrous minerals in the Earth's mantle, such as olivine, pyroxene and garnet, can incorporate considerable amounts of water as structurally bound hydroxyl. Even a small amount of water is present in mantle minerals, it can strongly affect a number of physical properties, including density, sound velocity, melting temperature, and electrical conductivities. The presence of water can also influence the dynamic behavior, lead to lateral velocity heterogeneities, and affect the material circulation of the Earth's deep interior. In particular, seismic studies have reported the existence of low-velocity zones in various locations of the Earth's upper mantle and transition zone, which has been expected to be associated with the presence of water in the region. In the past two decades, the effect of water on the elasticity and sound velocities of minerals at relevant pressure-temperature(P-T) conditions of the Earth's mantle attracted extensive interests. Combining the high P-T experimental and theoretical mineralogical results with seismic observations provides crucial constraints on the distribution of water in the Earth's mantle. In this study, we summarize recent experimental and theoretical mineral physics results on how water affects the elasticity and sound velocity of nominally anhydrous minerals in the Earth's mantle, which aims to provide new insights into the effect of hydration on the density and velocity profile of the Earth's mantle, which are of particular importance in understanding of water distribution in the region.
基金financially supported by the National Natural Science Foundation of China(52002059 and 51872204)the Belt&Road Young Scientist Exchanges Project of Science and Technology Commission Foundation of Shanghai(20520741000)+1 种基金the Fundamental Research Funds for the Central Universities(20D110631)the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials(DonghuaUniversity,KF2019)。
文摘Stretchable ionic conductors with high transparency and excellent resilience are highly desired for flexible electronics,but traditional ionic conductive hydrogels are easy to dry and freeze.Herein,a newly hybrid crosslinking strategy is presented for preparing a stretchable and transparent hydrogel by using sodium alginate(SA)and acrylamide based on the unique physically and covalently hybrid crosslinking mechanism,which is transformed into organohydrogel by simple solvent replacement.Due to the combination of hybrid crosslinking double network and hydrogen bond interactions introduced by the glycerin-water binary solvent,the SA-poly(acrylamide)-organohydrogel(SPOH)demonstrates excellent anti-freezing(-20℃)property,stability(>2 days),transparency,stretchability(~1600%)and high ionic conductivity(17.1 mS cm^(-1)).Thus,a triboelectric nanogenerator made from SPOH(O-TENG)shows an instantaneous peak power density of 262 mW m^(-2)at a load resistance of 10 MΩand efficiently harvests biomechanical energy to drive an electronic watch and light-emitting diode.Moreover,The O-TENG exhibits favorable long-term stability(2 weeks)and temperature tolerance(-20℃).In addition,the raw materials can be prepared into SPOH fibers by a simple tubular mold method,exhibiting high transparency,which can be used for laser transmission.The various abilities of the SPOH promise the application of energy harvesting and laser transmission for wearable electronics and biomedical field.