In this study, the suitability of current design methods for the 0.2% proof yield strength of the comer regions for high strength cold-formed steel at normal room temperature was investigated. The current standard pre...In this study, the suitability of current design methods for the 0.2% proof yield strength of the comer regions for high strength cold-formed steel at normal room temperature was investigated. The current standard predictions are generally accurate for outer comer specimen but conservative for inner comer specimen. Based on the experimental results, an analytical model to predict the comer strength of high strength cold-formed steel at normal room temperature was also proposed. The comparison indicated that the proposed model predicted well the comer strength of high strength cold-formed steel not only at normal room temperature but also at elevated temperatures. It is shown that the predictions obtained from the proposed model agree well with the test results. Generally the comer strength enhancement of high strength cold-formed steel decreases when the temperature increases.展开更多
基金Project (No. 113000-X80703) supported by the Postdoctoral Fund of Zhejiang Province, China
文摘In this study, the suitability of current design methods for the 0.2% proof yield strength of the comer regions for high strength cold-formed steel at normal room temperature was investigated. The current standard predictions are generally accurate for outer comer specimen but conservative for inner comer specimen. Based on the experimental results, an analytical model to predict the comer strength of high strength cold-formed steel at normal room temperature was also proposed. The comparison indicated that the proposed model predicted well the comer strength of high strength cold-formed steel not only at normal room temperature but also at elevated temperatures. It is shown that the predictions obtained from the proposed model agree well with the test results. Generally the comer strength enhancement of high strength cold-formed steel decreases when the temperature increases.