We review our works that focus on the microwave magnetic properties of metallic, ferrite and granular thin films. Soft magnetic material with large permeability and low energy loss in the GHz range is a challenge for ...We review our works that focus on the microwave magnetic properties of metallic, ferrite and granular thin films. Soft magnetic material with large permeability and low energy loss in the GHz range is a challenge for the inforcom technologies. GHz magnetic properties of the soft magnetic thin films with in-plane anisotropy were investigated. It is found that several hundreds of permeability at the GHz frequency was achieved for Col00_xZrx and Co90Nbl0 metallic thin films because of their high satu- ration magnetization, and an adjustable resonance frequency from 1.3 to 4.9 GHz was obtained. Compared with the metallic thin films, the weaker saturation magnetization of Ni-Zn ferrite thin films results in several tens of permeability at the GHz frequency, but the larger resistivity of the ferrite prepared in situ without any heating treatments has lower energy loss. In order to obtain materials with large permeability and low energy loss in the GHz range, the [CoFe-NiZn ferrite] composite granular thin films were investigated, where the advantage of higher saturation magnetization for the metallic alloy and the high resis- tivity as well as high saturation magnetization for the ferrite results in a good GHz magnetic performance.展开更多
Magnetic properties and magnetocaloric effects (MCEs) of the HoPdA1 compounds with the hexagonal ZrNiAl-type and the orthorhombic TiNiSi-type structures are investigated. Both the compounds are found to be antiferro...Magnetic properties and magnetocaloric effects (MCEs) of the HoPdA1 compounds with the hexagonal ZrNiAl-type and the orthorhombic TiNiSi-type structures are investigated. Both the compounds are found to be antiferromagnet with the Nrel tem- perature TN=12 and 10 K, respectively. A field-induced metamagnetic transition from antiferromagnetic (AFM) state to ferro- magnetic (FM) state is observed below TN. For the hexagonal HoPdA1, a small magnetic field can induce an FM-like state due to a weak AFM coupling, which leads to a high saturation magnetization and gives rise to a large MCE around TN. The maxi- mal value of magnetic entropy change (ASM) is -20.6 J/kg K with a refrigerant capacity (RC) value of 386 J/kg for a field change of 0-5 T. For the orthorhombic HoPdA1, the critical field required for metamagnetic transition is estimated to be about 1.5 T, showing a strong AFM coupling. However, the maximal ASM value is still -13.7 J/kg K around TN for a field change of 0-5 T. The large reversible ASM and considerable RC suggest that HoPdA1 may be an appropriate candidate for magnetic re- frigerant in a low temperature range.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11034004)National Science Fund for Distinguished Young Scholars (Grant No. 50925103)+1 种基金Key Grant Project of Chinese Ministry of Education (Grant No. 309027)the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2010-219)
文摘We review our works that focus on the microwave magnetic properties of metallic, ferrite and granular thin films. Soft magnetic material with large permeability and low energy loss in the GHz range is a challenge for the inforcom technologies. GHz magnetic properties of the soft magnetic thin films with in-plane anisotropy were investigated. It is found that several hundreds of permeability at the GHz frequency was achieved for Col00_xZrx and Co90Nbl0 metallic thin films because of their high satu- ration magnetization, and an adjustable resonance frequency from 1.3 to 4.9 GHz was obtained. Compared with the metallic thin films, the weaker saturation magnetization of Ni-Zn ferrite thin films results in several tens of permeability at the GHz frequency, but the larger resistivity of the ferrite prepared in situ without any heating treatments has lower energy loss. In order to obtain materials with large permeability and low energy loss in the GHz range, the [CoFe-NiZn ferrite] composite granular thin films were investigated, where the advantage of higher saturation magnetization for the metallic alloy and the high resis- tivity as well as high saturation magnetization for the ferrite results in a good GHz magnetic performance.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50731007 and 51021061)the Knowledge Innovation Project of the Chinese Academy of Sciencesthe High-Technology Research and Development Program of China
文摘Magnetic properties and magnetocaloric effects (MCEs) of the HoPdA1 compounds with the hexagonal ZrNiAl-type and the orthorhombic TiNiSi-type structures are investigated. Both the compounds are found to be antiferromagnet with the Nrel tem- perature TN=12 and 10 K, respectively. A field-induced metamagnetic transition from antiferromagnetic (AFM) state to ferro- magnetic (FM) state is observed below TN. For the hexagonal HoPdA1, a small magnetic field can induce an FM-like state due to a weak AFM coupling, which leads to a high saturation magnetization and gives rise to a large MCE around TN. The maxi- mal value of magnetic entropy change (ASM) is -20.6 J/kg K with a refrigerant capacity (RC) value of 386 J/kg for a field change of 0-5 T. For the orthorhombic HoPdA1, the critical field required for metamagnetic transition is estimated to be about 1.5 T, showing a strong AFM coupling. However, the maximal ASM value is still -13.7 J/kg K around TN for a field change of 0-5 T. The large reversible ASM and considerable RC suggest that HoPdA1 may be an appropriate candidate for magnetic re- frigerant in a low temperature range.