Electromagnetic forming (EMF) is a high-speed forming method which can be quite effective in increasing the forming limits of metal sheet. However, the EMF process is complicated due to magnetic-structure coupling a...Electromagnetic forming (EMF) is a high-speed forming method which can be quite effective in increasing the forming limits of metal sheet. However, the EMF process is complicated due to magnetic-structure coupling analysis. Numerical simulation offers an opportunity to overcome the problem. Nevertheless, most present models for EMF process are limited to 2D axisymmetric model. So, a three-dimensional (3D) finite element model was established to analyze the electromagnetic sheet bulging. The contact between the sheet and the die and the effect of sheet deformation on the magnetic field analysis were both taken into consideration during the forming process. The simulation results of deflection at the sheet center and 20 mm away from the center were in agreement with the experimental ones. The plastic strain energy and plastic strain were analyzed.展开更多
Boiling structures on evaporation surface of red copper sheet with a diameter (D) of 10 mm and a wall thickness (h) of 1 mm were processed by the ploughing-extrusion (P-E) processing method, which is one part of...Boiling structures on evaporation surface of red copper sheet with a diameter (D) of 10 mm and a wall thickness (h) of 1 mm were processed by the ploughing-extrusion (P-E) processing method, which is one part of the phase-change heat sink for high power (HP) light emitting diode (LED). The experimental results show that two different structures of rectangular- and triangular-shaped micro-grooves are formed in P-E process. When P-E depth (ap), interval of helical grooves (dp) and rotation speed (n) are 0.12 ram, 0.2 mm and 100 r/min, respectively, the boiling structures of triangular-shaped grooves with the fin height of 0.15 mm that has good evaporation performance are obtained. The shapes of the boiling structures are restricted by dp and ap, and dp is determined by n and amount of feed (f). The ploughing speed has an important influence on the formation of groove structure in P-E process.展开更多
The book "micropedolog" by Kubieana and a large number of publications has induced many people to practice soil micromorphology. Quantification of the soil fabric and its components was a major challenge. The use of...The book "micropedolog" by Kubieana and a large number of publications has induced many people to practice soil micromorphology. Quantification of the soil fabric and its components was a major challenge. The use of the image analyses in soil science was a breakthrough. Attempts to make soil thin sections go back to the beginning of the 2oth century. Microscopic techniques and recently high resolution electron microscope and use of computer assisted imaging techniques enabled the in vitro study of soils in three dimensional levels. It is now possible to store and process massive amounts of data. Micro- morphological concepts and techniques are applied in paleopedological, ecological, and archaeological studies. The aim of this work was to examine soil micromorphological imaging in historical perspective.展开更多
基金Project (50875093) supported by the National Natural Science Foundation of China
文摘Electromagnetic forming (EMF) is a high-speed forming method which can be quite effective in increasing the forming limits of metal sheet. However, the EMF process is complicated due to magnetic-structure coupling analysis. Numerical simulation offers an opportunity to overcome the problem. Nevertheless, most present models for EMF process are limited to 2D axisymmetric model. So, a three-dimensional (3D) finite element model was established to analyze the electromagnetic sheet bulging. The contact between the sheet and the die and the effect of sheet deformation on the magnetic field analysis were both taken into consideration during the forming process. The simulation results of deflection at the sheet center and 20 mm away from the center were in agreement with the experimental ones. The plastic strain energy and plastic strain were analyzed.
基金Projects(50436010, 50675070) supported by the National Natural Science Foundation of China Project(07118064) supported by the Natural Science Foundation of Guangdong Province, China+1 种基金 Project(U0834002) supported by the Joint Fund of NSFC-Guangdong of ChinaProjects(SY200806300289A, JSA200903190981A) supported by Shenzhen Scientific Program, China
文摘Boiling structures on evaporation surface of red copper sheet with a diameter (D) of 10 mm and a wall thickness (h) of 1 mm were processed by the ploughing-extrusion (P-E) processing method, which is one part of the phase-change heat sink for high power (HP) light emitting diode (LED). The experimental results show that two different structures of rectangular- and triangular-shaped micro-grooves are formed in P-E process. When P-E depth (ap), interval of helical grooves (dp) and rotation speed (n) are 0.12 ram, 0.2 mm and 100 r/min, respectively, the boiling structures of triangular-shaped grooves with the fin height of 0.15 mm that has good evaporation performance are obtained. The shapes of the boiling structures are restricted by dp and ap, and dp is determined by n and amount of feed (f). The ploughing speed has an important influence on the formation of groove structure in P-E process.
文摘The book "micropedolog" by Kubieana and a large number of publications has induced many people to practice soil micromorphology. Quantification of the soil fabric and its components was a major challenge. The use of the image analyses in soil science was a breakthrough. Attempts to make soil thin sections go back to the beginning of the 2oth century. Microscopic techniques and recently high resolution electron microscope and use of computer assisted imaging techniques enabled the in vitro study of soils in three dimensional levels. It is now possible to store and process massive amounts of data. Micro- morphological concepts and techniques are applied in paleopedological, ecological, and archaeological studies. The aim of this work was to examine soil micromorphological imaging in historical perspective.