The interdiffusion coefficients in Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys were efficiently determined by combining diffusion couple experiments and high-throughput determination of ...The interdiffusion coefficients in Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys were efficiently determined by combining diffusion couple experiments and high-throughput determination of interdiffusion coefficients(HitDIC)software at 1273−1373 K.The results show that the addition of Al,Cu,and Mn to CoCrFeNi high-entropy alloys promotes the diffusion of Co,Cr,and Fe atoms.The comparison of tracer diffusion coefficients indicates that there is no sluggish diffusion in tracer diffusion on the thermodynamic temperature scale for the present Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys.The linear relationship between diffusion entropy and activation energy reveals that the diffusion process of atoms is unaffected by an increase in the number of components as long as the crystal structure remains unchanged.展开更多
The logistic growth model with correlated additive and multiplicative Gaussian white noise is used to anedyze tumor cell population. The effects of perfectly correlated and anti-correlated noise on the stationary prop...The logistic growth model with correlated additive and multiplicative Gaussian white noise is used to anedyze tumor cell population. The effects of perfectly correlated and anti-correlated noise on the stationary properties of tumor cell population are studied. As in both cases the diffusion coefficient has zero point in real number field, some special features of the system are arisen. It is found that in cause tumor cell extinction. In the perfectly anti-correlated tumor cell population exhibit two extrema. both cases, the increase of the multiplicative noise intensity case, the stationary probability distribution as a function of展开更多
In this paper, using a Gaussian distribution of wave normal angle X=tan0, and considering contributions of harmonic resonances n up to +5, we analyze the effect of normal angle on diffusion coefficients induced by gy...In this paper, using a Gaussian distribution of wave normal angle X=tan0, and considering contributions of harmonic resonances n up to +5, we analyze the effect of normal angle on diffusion coefficients induced by gyroresonance between chorus waves and electrons with energies 0.1 and 1.0 MeV on the dayside and nightside at L=4.5. When pitch angle a~〉10~, for 0.1 and 1,0 MeV electrons on the dayside and nightside, diffusion coefficients of five orders (-2, -1, 0, 1, 2) decrease with in- creasing normal angle peak, leading to the total diffusion coefficients decreasing with increasing peak. When ae〈10~, for 1.0 MeV electrons on the dayside and 0.1 MeV electrons on the dayside and nightside, the positive order diffusion coefficients are generally smaller than the same negative order ones; in the meanwhile, diffusion coefficients of orders (-2, 1, 2) are very small, the dominant order n=-I diffusion coefficients change very little, hence the total diffusion coefficients almost remain un- changed. However, for 1.0 MeV electrons on the nightside, diffusion coefficients of orders (-2, 1, 2) which are larger than those of the order (-1) resonance increase with increasing peak, hence the total diffusion coefficients increase with increasing peak. The current results show that the wave normal angle plays an important role in the quantitative analysis of gyroresonance between chorus waves and electrons in the outer radiation belt.展开更多
This article studies propagating wave fronts in an isothermal chemical reaction A + nB →(n + 1)B involving two chemical species,a reactant A and an auto-catalyst B whose diffusion coefficients,DA and DB,are unequal d...This article studies propagating wave fronts in an isothermal chemical reaction A + nB →(n + 1)B involving two chemical species,a reactant A and an auto-catalyst B whose diffusion coefficients,DA and DB,are unequal due to different molecular weights and/or sizes.More accurate bounds v* and v* that depend on DB/DA,when the ratio is less than 1,are derived such that there is a unique travelling wave of every speed v v* and there does not exist any travelling wave of speed v < v*.The refined bounds for DB/DA < 1 case is compatible to what has been shown in earlier work for DB/DA > 1 when n 3.展开更多
基金supported by the National Natural Science Foundation of China(No.52374372)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.23KJB430042)+3 种基金the Jiangsu Province Large Scientific Instruments Open Sharing Autonomous Research Filing Project,China(No.TC2023A037)the Yangzhou City−Yangzhou University Cooperation Foundation,China(No.YZ2022183)High-end Talent Support Program of Yangzhou University,China,Qinglan Project of Yangzhou University,ChinaLvyangjinfeng Talent program of Yangzhou,China.
文摘The interdiffusion coefficients in Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys were efficiently determined by combining diffusion couple experiments and high-throughput determination of interdiffusion coefficients(HitDIC)software at 1273−1373 K.The results show that the addition of Al,Cu,and Mn to CoCrFeNi high-entropy alloys promotes the diffusion of Co,Cr,and Fe atoms.The comparison of tracer diffusion coefficients indicates that there is no sluggish diffusion in tracer diffusion on the thermodynamic temperature scale for the present Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys.The linear relationship between diffusion entropy and activation energy reveals that the diffusion process of atoms is unaffected by an increase in the number of components as long as the crystal structure remains unchanged.
基金Supported by the National Natural Science Foundation of China under Grant No. 11045004
文摘The logistic growth model with correlated additive and multiplicative Gaussian white noise is used to anedyze tumor cell population. The effects of perfectly correlated and anti-correlated noise on the stationary properties of tumor cell population are studied. As in both cases the diffusion coefficient has zero point in real number field, some special features of the system are arisen. It is found that in cause tumor cell extinction. In the perfectly anti-correlated tumor cell population exhibit two extrema. both cases, the increase of the multiplicative noise intensity case, the stationary probability distribution as a function of
文摘In this paper, using a Gaussian distribution of wave normal angle X=tan0, and considering contributions of harmonic resonances n up to +5, we analyze the effect of normal angle on diffusion coefficients induced by gyroresonance between chorus waves and electrons with energies 0.1 and 1.0 MeV on the dayside and nightside at L=4.5. When pitch angle a~〉10~, for 0.1 and 1,0 MeV electrons on the dayside and nightside, diffusion coefficients of five orders (-2, -1, 0, 1, 2) decrease with in- creasing normal angle peak, leading to the total diffusion coefficients decreasing with increasing peak. When ae〈10~, for 1.0 MeV electrons on the dayside and 0.1 MeV electrons on the dayside and nightside, the positive order diffusion coefficients are generally smaller than the same negative order ones; in the meanwhile, diffusion coefficients of orders (-2, 1, 2) are very small, the dominant order n=-I diffusion coefficients change very little, hence the total diffusion coefficients almost remain un- changed. However, for 1.0 MeV electrons on the nightside, diffusion coefficients of orders (-2, 1, 2) which are larger than those of the order (-1) resonance increase with increasing peak, hence the total diffusion coefficients increase with increasing peak. The current results show that the wave normal angle plays an important role in the quantitative analysis of gyroresonance between chorus waves and electrons in the outer radiation belt.
基金supported by Shanxi Bairen PlanNational Natural Science Foundation of China (Grant No. 11001157)
文摘This article studies propagating wave fronts in an isothermal chemical reaction A + nB →(n + 1)B involving two chemical species,a reactant A and an auto-catalyst B whose diffusion coefficients,DA and DB,are unequal due to different molecular weights and/or sizes.More accurate bounds v* and v* that depend on DB/DA,when the ratio is less than 1,are derived such that there is a unique travelling wave of every speed v v* and there does not exist any travelling wave of speed v < v*.The refined bounds for DB/DA < 1 case is compatible to what has been shown in earlier work for DB/DA > 1 when n 3.