Multichip on Ahnnintnn Metal Plate(MOAMP) technology with simple structure and low thermal resistance is developed for effective heat reratrval of Light Emitting Diode(LED) p-n junction and LED lighting module to ...Multichip on Ahnnintnn Metal Plate(MOAMP) technology with simple structure and low thermal resistance is developed for effective heat reratrval of Light Emitting Diode(LED) p-n junction and LED lighting module to have high reliability. The thermal resistance of LED modules was numerical and experimental. Thermal resistance from the jtnction to aluminten metal plate, considering input power of IFD module using MOAMP technology, is 3.02 K/W, 3.23 K/W for the measured and calculated, respectively. We expect that the reported MOAMP technology with low thermal resistance will be a promising solution for high power LED fighting modules.展开更多
The dynamic range of the currently most widely used 24-bit seismic data acquisition devices is 10–20 d B lower than that of broadband seismometers, and this can affect the completeness of seismic waveform recordings ...The dynamic range of the currently most widely used 24-bit seismic data acquisition devices is 10–20 d B lower than that of broadband seismometers, and this can affect the completeness of seismic waveform recordings under certain conditions. However, this problem is not easy to solve because of the lack of analog to digital converter(ADC) chips with more than 24 bits in the market. In this paper, we propose a method in which an adder, an integrator, a digital to analog converter chip, a field-programmable gate array, and an existing low-resolution ADC chip are used to build a third-order 16-bit oversampling delta-sigma modulator. This modulator is equipped with a digital decimation filter, thus facilitating higher resolution and larger dynamic range seismic data acquisition. Experimental results show that, within the 0.1–40 Hz frequency range, the circuit board's dynamic range reaches 158.2 d B, its resolution reaches 25.99 bits, and its linearity error is below 2.5 ppm, which is better than what is achieved by the commercial 24-bit ADC chips ADS1281 and CS5371. This demonstrates that the proposed method may alleviate or even completely resolve the amplitude-limitation problem that so commonly occurs with broadband observation instruments during strong earthquakes.展开更多
The ASIC is widely used in the field of high energy physics. Astroparticle experiments benefit from high integration, smallsize and low power consumption. In this paper an analog chip named ARCHGARD (Analog Readout Ch...The ASIC is widely used in the field of high energy physics. Astroparticle experiments benefit from high integration, smallsize and low power consumption. In this paper an analog chip named ARCHGARD (Analog Readout Chip for High energyGamma Ray Detector) for high energy physics experiment is introduced. ARCHGARD is a readout chip, in chartered 0.35 mSiGe technology, for photomultipliers (PMT) array readout. The chip is designed for the Large High Altitude Air Shower Ob-servatory (LHAASO) project. The ASIC integrates 16 independent and auto-triggered channels with variable gain and variableshaping time. It provides analog output for charge measurement, which is performed from 1 up to 3000 photo-electrons (p.e.).The integral nonlinearity of the whole input range is less than 1% and the equivalent input noise is less than 1/10 p.e. Eachchannel has a trigger output for time measurement.展开更多
文摘Multichip on Ahnnintnn Metal Plate(MOAMP) technology with simple structure and low thermal resistance is developed for effective heat reratrval of Light Emitting Diode(LED) p-n junction and LED lighting module to have high reliability. The thermal resistance of LED modules was numerical and experimental. Thermal resistance from the jtnction to aluminten metal plate, considering input power of IFD module using MOAMP technology, is 3.02 K/W, 3.23 K/W for the measured and calculated, respectively. We expect that the reported MOAMP technology with low thermal resistance will be a promising solution for high power LED fighting modules.
基金supported by the National Natural Science Foundation of China(Grant No.41404142)the National Science and Technology Support Plan Project(Grant No.2012BAF14B12)+1 种基金the Basic Research Projects of Institute of Earthquake Science,CEA(Grant Nos.2014IES0201,2011IES0203&2015IES0406)the Earthquake Monitoring and Prediction Project,CEA(Grant No.16A46ZX262)
文摘The dynamic range of the currently most widely used 24-bit seismic data acquisition devices is 10–20 d B lower than that of broadband seismometers, and this can affect the completeness of seismic waveform recordings under certain conditions. However, this problem is not easy to solve because of the lack of analog to digital converter(ADC) chips with more than 24 bits in the market. In this paper, we propose a method in which an adder, an integrator, a digital to analog converter chip, a field-programmable gate array, and an existing low-resolution ADC chip are used to build a third-order 16-bit oversampling delta-sigma modulator. This modulator is equipped with a digital decimation filter, thus facilitating higher resolution and larger dynamic range seismic data acquisition. Experimental results show that, within the 0.1–40 Hz frequency range, the circuit board's dynamic range reaches 158.2 d B, its resolution reaches 25.99 bits, and its linearity error is below 2.5 ppm, which is better than what is achieved by the commercial 24-bit ADC chips ADS1281 and CS5371. This demonstrates that the proposed method may alleviate or even completely resolve the amplitude-limitation problem that so commonly occurs with broadband observation instruments during strong earthquakes.
基金supported by the Large High Altitude Air Shower Observatory (LHAASO) Project
文摘The ASIC is widely used in the field of high energy physics. Astroparticle experiments benefit from high integration, smallsize and low power consumption. In this paper an analog chip named ARCHGARD (Analog Readout Chip for High energyGamma Ray Detector) for high energy physics experiment is introduced. ARCHGARD is a readout chip, in chartered 0.35 mSiGe technology, for photomultipliers (PMT) array readout. The chip is designed for the Large High Altitude Air Shower Ob-servatory (LHAASO) project. The ASIC integrates 16 independent and auto-triggered channels with variable gain and variableshaping time. It provides analog output for charge measurement, which is performed from 1 up to 3000 photo-electrons (p.e.).The integral nonlinearity of the whole input range is less than 1% and the equivalent input noise is less than 1/10 p.e. Eachchannel has a trigger output for time measurement.