An adaptive terminal sliding mode control (SMC) technique is proposed to deal with the tracking problem for a class of high-order nonlinear dynamic systems. It is shown that a function augmented sliding hyperplane can...An adaptive terminal sliding mode control (SMC) technique is proposed to deal with the tracking problem for a class of high-order nonlinear dynamic systems. It is shown that a function augmented sliding hyperplane can be used to develop a new terminal sliding mode for high-order nonlinear systems. A terminal SMC controller based on Lyapunov theory is designed to force the state variables of the closed-loop system to reach and remain on the terminal sliding mode, so that the output tracking error then converges to zero in finite time which can be set arbitrarily. An adaptive mechanism is introduced to estimate the unknown parameters of the upper bounds of system uncertainties. The estimates are then used as controller parameters so that the effects of uncertain dynamics can be eliminated. It is also shown that the stability of the closed-loop system can be guaranteed with the proposed control strategy. The simulation of a numerical example is provided to show the effectiveness of the new method.展开更多
In classical theorems on the convergence of Gaussian quadrature formulas for power orthogonal polynomials with respect to a weight w on I (a,b), a function G E S(w)= (f: fxlf(x)lw(x)dx 〈 ∞ satisfying the ...In classical theorems on the convergence of Gaussian quadrature formulas for power orthogonal polynomials with respect to a weight w on I (a,b), a function G E S(w)= (f: fxlf(x)lw(x)dx 〈 ∞ satisfying the conditions G(2J)(x) :〉 O, x E (a,b), j = 0, 1 , and growing as fast as possible as x→ a- and x → b-, plays an important role. But to find such a function G is often difficult and complicated. This implies that to prove convergence of Gaussian quadrature formulas, it is enough to find a function G E S(w) with G ≥ 0 satisfying展开更多
文摘An adaptive terminal sliding mode control (SMC) technique is proposed to deal with the tracking problem for a class of high-order nonlinear dynamic systems. It is shown that a function augmented sliding hyperplane can be used to develop a new terminal sliding mode for high-order nonlinear systems. A terminal SMC controller based on Lyapunov theory is designed to force the state variables of the closed-loop system to reach and remain on the terminal sliding mode, so that the output tracking error then converges to zero in finite time which can be set arbitrarily. An adaptive mechanism is introduced to estimate the unknown parameters of the upper bounds of system uncertainties. The estimates are then used as controller parameters so that the effects of uncertain dynamics can be eliminated. It is also shown that the stability of the closed-loop system can be guaranteed with the proposed control strategy. The simulation of a numerical example is provided to show the effectiveness of the new method.
基金Project supported by the National Natural Science Foundation of China (Nos. 11171100,10871065,11071064)the Hunan Provincial Natural Science Foundation of China (No. 10JJ3089)the Scientific Research Fund of Hunan Provincial Education Department (No. 11W012)
文摘In classical theorems on the convergence of Gaussian quadrature formulas for power orthogonal polynomials with respect to a weight w on I (a,b), a function G E S(w)= (f: fxlf(x)lw(x)dx 〈 ∞ satisfying the conditions G(2J)(x) :〉 O, x E (a,b), j = 0, 1 , and growing as fast as possible as x→ a- and x → b-, plays an important role. But to find such a function G is often difficult and complicated. This implies that to prove convergence of Gaussian quadrature formulas, it is enough to find a function G E S(w) with G ≥ 0 satisfying