期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
河南省电力公司2000年科学技术进步获奖成果简介之五--高收敛性电力网线损理论计算与分析系统
1
《河南电力科技信息》 2003年第2期8-8,共1页
关键词 河南省电力公司 2000年 科学技术进步获奖成果 电力系统 电力网 线损 理论计算 高收敛性
下载PDF
基于非线性规划问题GA的Matlab程序 被引量:4
2
作者 许桂水 曾山 《武汉工业学院学报》 CAS 2002年第2期35-37,共3页
利用Matlab软件强大的编程、计算功能 ,结合遗传控制理论提出了一种基于非线性规划问题遗传算法的Matlab程序 ,并且对遗传算法有所改进。通过多峰函数优化问题的仿真试验 。
关键词 GA 遗传算法 MATLAB程序 非线规划 高收敛性 有效
下载PDF
Adaptive terminal sliding mode control for high-order nonlinear dynamic systems 被引量:11
3
作者 庄开宇 苏宏业 +1 位作者 张克勤 褚健 《Journal of Zhejiang University Science》 EI CSCD 2003年第1期58-63,共6页
An adaptive terminal sliding mode control (SMC) technique is proposed to deal with the tracking problem for a class of high-order nonlinear dynamic systems. It is shown that a function augmented sliding hyperplane can... An adaptive terminal sliding mode control (SMC) technique is proposed to deal with the tracking problem for a class of high-order nonlinear dynamic systems. It is shown that a function augmented sliding hyperplane can be used to develop a new terminal sliding mode for high-order nonlinear systems. A terminal SMC controller based on Lyapunov theory is designed to force the state variables of the closed-loop system to reach and remain on the terminal sliding mode, so that the output tracking error then converges to zero in finite time which can be set arbitrarily. An adaptive mechanism is introduced to estimate the unknown parameters of the upper bounds of system uncertainties. The estimates are then used as controller parameters so that the effects of uncertain dynamics can be eliminated. It is also shown that the stability of the closed-loop system can be guaranteed with the proposed control strategy. The simulation of a numerical example is provided to show the effectiveness of the new method. 展开更多
关键词 Terminal sliding mode control Finite time convergence Adaptive laws
下载PDF
Convergence of Gaussian Quadrature Formulas for Power Orthogonal Polynomials
4
作者 Yingguang SHI 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第5期751-766,共16页
In classical theorems on the convergence of Gaussian quadrature formulas for power orthogonal polynomials with respect to a weight w on I (a,b), a function G E S(w)= (f: fxlf(x)lw(x)dx 〈 ∞ satisfying the ... In classical theorems on the convergence of Gaussian quadrature formulas for power orthogonal polynomials with respect to a weight w on I (a,b), a function G E S(w)= (f: fxlf(x)lw(x)dx 〈 ∞ satisfying the conditions G(2J)(x) :〉 O, x E (a,b), j = 0, 1 , and growing as fast as possible as x→ a- and x → b-, plays an important role. But to find such a function G is often difficult and complicated. This implies that to prove convergence of Gaussian quadrature formulas, it is enough to find a function G E S(w) with G ≥ 0 satisfying 展开更多
关键词 CONVERGENCE Gaussian quadrature formula Freud weight
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部