To select high performance milling tools with optimum geometry structure suitable for machining hardened steel SKD11, geometry structures of tools are optimized. Four kinds of TiAlN coated cemented carbide tools are d...To select high performance milling tools with optimum geometry structure suitable for machining hardened steel SKD11, geometry structures of tools are optimized. Four kinds of TiAlN coated cemented carbide tools are developed. The milling performance in high-speed milling hardened steel SKD11 by using these four kinds of tools is evaluated through the aspects of cutting force, cutting vibration, chip deformation, tool life, and tool wear mechanism, thus determining the optimum milling tool. The tool life of the optimum tool is 3 times of that of other tool, and the cutting force and vibration decrease by 70% compared with that of other tools. It has the most stable cutting performance.展开更多
文摘To select high performance milling tools with optimum geometry structure suitable for machining hardened steel SKD11, geometry structures of tools are optimized. Four kinds of TiAlN coated cemented carbide tools are developed. The milling performance in high-speed milling hardened steel SKD11 by using these four kinds of tools is evaluated through the aspects of cutting force, cutting vibration, chip deformation, tool life, and tool wear mechanism, thus determining the optimum milling tool. The tool life of the optimum tool is 3 times of that of other tool, and the cutting force and vibration decrease by 70% compared with that of other tools. It has the most stable cutting performance.