During seismic data acquisition, a high-sensitivity geophone with a high inherent frequency can increase high frequency energy by suppressing low frequency signals. This could cause a worse response at low frequencies...During seismic data acquisition, a high-sensitivity geophone with a high inherent frequency can increase high frequency energy by suppressing low frequency signals. This could cause a worse response at low frequencies. If the advantages of high-sensitivity data and conventional data are combined, the effective bandwidth will be broadened. Considering this, we propose a partial frequency band match filtering method which can combine the advantages of both high frequency and conventional frequency ranges. By introducing Ricker wavelets with different dominant frequencies and amplitudes, we established a theoretical model which possesses characteristics of both types of seismic data and demonstrates the feasibility of the partial frequency band match filtering method. A test using single shot records shows the effectiveness of this method for widening the effective frequency band.展开更多
Bed expansion behavior and sensitivity analysis for super-high-rate anaerobic bioreactor (SAB) were performed based on bed expansion ratio (E), maximum bed sludge content (Vpmax), and maximum bed contact time be...Bed expansion behavior and sensitivity analysis for super-high-rate anaerobic bioreactor (SAB) were performed based on bed expansion ratio (E), maximum bed sludge content (Vpmax), and maximum bed contact time between sludge and liquid (Tmax). Bed expansion behavior models were established under bed unfluidization, fluidization, and transportation states. Under unfluidization state, Ewas 0, Vprnax was 4867 ml, and rmax was 844-3800 s. Under fluidization state, E, Vpmax, and Tmax were 5.28%-255.69%, 1368-4559 ml, and 104-732 s, respectively. Under transportation state, washout of granular sludge occurred and destabilized the SAB. During stable running of SAB under fluidization state, E correlated positively with superficial gas and liquid velocities (Ug and ul), while Vpmax and Tmax correlated negatively. For E and Vpmax, the sensitivities of ug and ul were close to each other, while for Tmax, the sensitivity of ur was greater than that of Ug. The prediction from these models was a close match to the experimental data.展开更多
Two-dimensional (2D) layered transition metal dichalcogenide (TMD) materials (e.g., MoS2) have attracted considerable interest due to their atomically thin geometry and semiconducting electronic properties. With...Two-dimensional (2D) layered transition metal dichalcogenide (TMD) materials (e.g., MoS2) have attracted considerable interest due to their atomically thin geometry and semiconducting electronic properties. With ultrahigh surface to volume ratio, the electronic properties of these atomically thin semiconductors can be readily modulated by their environment. Here we report an investigation of the effects of mercury(II) (Hg^2+) ions on the electrical transport properties of few-layer molybdenum disulfide (MoS2). The interaction between Hg^2+ ions and few-layer MoS2 was studied by field-effect transistor measurements and photoluminescence. Due to a high binding affinity between Hg2. ions and the sulfur sites on the surface of MoS2 layers, Hg^2+ ions can strongly bind to MoS2. We show that the binding of Hg^2+ can produce a p-type doping effect to reduce the electron concentration in n-type few-layer MoS2. It can thus effectively modulate the electron transport and photoluminescence properties in few-layer MoS2. By monitoring the conductance change of few-layer MoS2 in varying concentration Hg2~ solutions, we further show that few-layer MoS2 transistors can function as highly sensitive sensors for rapid electrical detection of Hg^2+ ion with a detection limit of 30 pM.展开更多
基金financially supported by the National Natural Science Foundation of China(No.41104072)College Students Science and Technology Innovation Activity Plan in Zhejiang Province(No. 2012R401214)
文摘During seismic data acquisition, a high-sensitivity geophone with a high inherent frequency can increase high frequency energy by suppressing low frequency signals. This could cause a worse response at low frequencies. If the advantages of high-sensitivity data and conventional data are combined, the effective bandwidth will be broadened. Considering this, we propose a partial frequency band match filtering method which can combine the advantages of both high frequency and conventional frequency ranges. By introducing Ricker wavelets with different dominant frequencies and amplitudes, we established a theoretical model which possesses characteristics of both types of seismic data and demonstrates the feasibility of the partial frequency band match filtering method. A test using single shot records shows the effectiveness of this method for widening the effective frequency band.
基金Project supported by the Hi-Tech Research Development Program (863) of China (No. 2006AA06Z332)the Ministry of Science and Technology of China (No. 2008BADC4B10)
文摘Bed expansion behavior and sensitivity analysis for super-high-rate anaerobic bioreactor (SAB) were performed based on bed expansion ratio (E), maximum bed sludge content (Vpmax), and maximum bed contact time between sludge and liquid (Tmax). Bed expansion behavior models were established under bed unfluidization, fluidization, and transportation states. Under unfluidization state, Ewas 0, Vprnax was 4867 ml, and rmax was 844-3800 s. Under fluidization state, E, Vpmax, and Tmax were 5.28%-255.69%, 1368-4559 ml, and 104-732 s, respectively. Under transportation state, washout of granular sludge occurred and destabilized the SAB. During stable running of SAB under fluidization state, E correlated positively with superficial gas and liquid velocities (Ug and ul), while Vpmax and Tmax correlated negatively. For E and Vpmax, the sensitivities of ug and ul were close to each other, while for Tmax, the sensitivity of ur was greater than that of Ug. The prediction from these models was a close match to the experimental data.
文摘Two-dimensional (2D) layered transition metal dichalcogenide (TMD) materials (e.g., MoS2) have attracted considerable interest due to their atomically thin geometry and semiconducting electronic properties. With ultrahigh surface to volume ratio, the electronic properties of these atomically thin semiconductors can be readily modulated by their environment. Here we report an investigation of the effects of mercury(II) (Hg^2+) ions on the electrical transport properties of few-layer molybdenum disulfide (MoS2). The interaction between Hg^2+ ions and few-layer MoS2 was studied by field-effect transistor measurements and photoluminescence. Due to a high binding affinity between Hg2. ions and the sulfur sites on the surface of MoS2 layers, Hg^2+ ions can strongly bind to MoS2. We show that the binding of Hg^2+ can produce a p-type doping effect to reduce the electron concentration in n-type few-layer MoS2. It can thus effectively modulate the electron transport and photoluminescence properties in few-layer MoS2. By monitoring the conductance change of few-layer MoS2 in varying concentration Hg2~ solutions, we further show that few-layer MoS2 transistors can function as highly sensitive sensors for rapid electrical detection of Hg^2+ ion with a detection limit of 30 pM.