由于数据规模的快速增长,高效用序列模式挖掘算法效率严重下降.针对这种情况,提出基于Map Reduce的高效用序列模式挖掘算法Hus Ma R.算法基于Map Reduce框架,使用效用矩阵高效地生成候选项;使用随机映射策略均衡计算资源;使用基于领域...由于数据规模的快速增长,高效用序列模式挖掘算法效率严重下降.针对这种情况,提出基于Map Reduce的高效用序列模式挖掘算法Hus Ma R.算法基于Map Reduce框架,使用效用矩阵高效地生成候选项;使用随机映射策略均衡计算资源;使用基于领域的剪枝策略来防止组合爆炸.实验结果表明,在大规模数据集下,算法取得了较高的并行效率.展开更多
为了快速地从无限的流数据中挖掘出高效用模式,基于已有算法HUM-UT提出一种流数据上的高效用模式挖掘算法——IHUM-UT(Improved High Utility Mining based on Utility Tree)算法.IHUM-UT算法通过压缩HUM-UT算法的头表大小,使其只包含...为了快速地从无限的流数据中挖掘出高效用模式,基于已有算法HUM-UT提出一种流数据上的高效用模式挖掘算法——IHUM-UT(Improved High Utility Mining based on Utility Tree)算法.IHUM-UT算法通过压缩HUM-UT算法的头表大小,使其只包含滑动窗口中关注的数据,减少挖掘时所要遍历的数据量,达到提高时间效率的目的.结合两个数据集,调节最小效用阈值、批大小和窗口大小,对两个算法进行对比实验,实验结果表明,IHUM-UT算法得到的高效用模式集与HUM-UT算法完全一致,在时间效率上有较大提升,这种提升在关注数据量较少、不同数据项个数较多的情况下更为突出.展开更多
现有的面向数据流的高效用模式挖掘方法局限性之一在于假定数据都带有正的效用值,且在挖掘过程中使用效用列表会消耗大量的时间和内存。为了解决以上问题,首次提出在数据流中挖掘含负项的高效用模式挖掘算法,在算法中设计了一种新颖的...现有的面向数据流的高效用模式挖掘方法局限性之一在于假定数据都带有正的效用值,且在挖掘过程中使用效用列表会消耗大量的时间和内存。为了解决以上问题,首次提出在数据流中挖掘含负项的高效用模式挖掘算法,在算法中设计了一种新颖的列表索引结构(list index structure,LIS),LIS包括数据段和索引段,依据索引段中的索引值以及项集中的正负效用值,在滑动窗口中可快速访问或更新数据段并及时剪枝,有效挖掘含负项的高效用模式,以此来提升算法的时空性能。进行了广泛的实验评估来验证算法的效率,实验结果表明,提出算法在内存消耗及运行时间方面均表现出良好的性能。展开更多
文摘由于数据规模的快速增长,高效用序列模式挖掘算法效率严重下降.针对这种情况,提出基于Map Reduce的高效用序列模式挖掘算法Hus Ma R.算法基于Map Reduce框架,使用效用矩阵高效地生成候选项;使用随机映射策略均衡计算资源;使用基于领域的剪枝策略来防止组合爆炸.实验结果表明,在大规模数据集下,算法取得了较高的并行效率.
文摘为了快速地从无限的流数据中挖掘出高效用模式,基于已有算法HUM-UT提出一种流数据上的高效用模式挖掘算法——IHUM-UT(Improved High Utility Mining based on Utility Tree)算法.IHUM-UT算法通过压缩HUM-UT算法的头表大小,使其只包含滑动窗口中关注的数据,减少挖掘时所要遍历的数据量,达到提高时间效率的目的.结合两个数据集,调节最小效用阈值、批大小和窗口大小,对两个算法进行对比实验,实验结果表明,IHUM-UT算法得到的高效用模式集与HUM-UT算法完全一致,在时间效率上有较大提升,这种提升在关注数据量较少、不同数据项个数较多的情况下更为突出.
文摘现有的面向数据流的高效用模式挖掘方法局限性之一在于假定数据都带有正的效用值,且在挖掘过程中使用效用列表会消耗大量的时间和内存。为了解决以上问题,首次提出在数据流中挖掘含负项的高效用模式挖掘算法,在算法中设计了一种新颖的列表索引结构(list index structure,LIS),LIS包括数据段和索引段,依据索引段中的索引值以及项集中的正负效用值,在滑动窗口中可快速访问或更新数据段并及时剪枝,有效挖掘含负项的高效用模式,以此来提升算法的时空性能。进行了广泛的实验评估来验证算法的效率,实验结果表明,提出算法在内存消耗及运行时间方面均表现出良好的性能。