期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
稀疏交叉熵粗糙集DDRBM-DNNS高校科研能力评估 被引量:3
1
作者 田芸 《数学的实践与认识》 北大核心 2016年第23期17-27,共11页
针对高校科研水平深度学习网络训练评价中存在评价特征同质化现象,造成评估结果精度不高的问题,提出稀疏交叉熵粗糙集双向受限制深度玻尔兹曼机(DDRBM-DNNS)高校科研能力评估方法.首先,考虑采用受限制玻尔兹曼机(RBM)和稀疏交叉熵惩罚... 针对高校科研水平深度学习网络训练评价中存在评价特征同质化现象,造成评估结果精度不高的问题,提出稀疏交叉熵粗糙集双向受限制深度玻尔兹曼机(DDRBM-DNNS)高校科研能力评估方法.首先,考虑采用受限制玻尔兹曼机(RBM)和稀疏交叉熵惩罚参数对深度学习网络进行改进,实现深度学习网络特征训练同质化现象的削弱;同时,针对输入数据的预处理问题,考虑基于粗糙集的前置预处理方式实现,在维持数据输入信息完整前提下,实现输入样本数据的有效归约,进而实现样本处理量的简化,有利于深度学习网络收敛过程的提速;最后,利用所提算法对高校科研水平进行评价,实验数据显示,所提评价模型具备更高的评估精度和更快运算效率. 展开更多
关键词 稀疏交叉熵 粗糙集 高效能力评估 双向马尔科夫 受限玻尔兹曼机
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部