期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于Bhattacharyya核的SVM
1
作者
刘振丙
刘小茂
《应用数学》
CSCD
北大核心
2005年第S1期154-157,共4页
包括图像识别在内的很多应用领域里,把单个样本表示成向量的集合的形式是很自然的想法,利用一个合适的核函数我们可以把这些向量映射到一个更高维的Hilbert空间,在这个高维空间里用Kernel PCA方法找到样本的高斯分布族,这样就可以把样...
包括图像识别在内的很多应用领域里,把单个样本表示成向量的集合的形式是很自然的想法,利用一个合适的核函数我们可以把这些向量映射到一个更高维的Hilbert空间,在这个高维空间里用Kernel PCA方法找到样本的高斯分布族,这样就可以把样本上的核函数定义成它们所服从的高斯分布密度函数的Bhattacharrya仿射.这样得到的核函数具有比较好的性质,比如说在各种变换下有稳定性表现,从而也说明了即使还有别的表示样本的方法,用向量集合的形式来表示单个的样本也是具有合理性的.
展开更多
关键词
Bhattacharyya核函数
高斯分布族
KERNEL
PCA方法
下载PDF
职称材料
题名
一种基于Bhattacharyya核的SVM
1
作者
刘振丙
刘小茂
机构
华中科技大学数学系
出处
《应用数学》
CSCD
北大核心
2005年第S1期154-157,共4页
基金
国家自然科学基金资助项目(60373090)
文摘
包括图像识别在内的很多应用领域里,把单个样本表示成向量的集合的形式是很自然的想法,利用一个合适的核函数我们可以把这些向量映射到一个更高维的Hilbert空间,在这个高维空间里用Kernel PCA方法找到样本的高斯分布族,这样就可以把样本上的核函数定义成它们所服从的高斯分布密度函数的Bhattacharrya仿射.这样得到的核函数具有比较好的性质,比如说在各种变换下有稳定性表现,从而也说明了即使还有别的表示样本的方法,用向量集合的形式来表示单个的样本也是具有合理性的.
关键词
Bhattacharyya核函数
高斯分布族
KERNEL
PCA方法
Keywords
Bhattacharyya kernel
Gaussian distribution
Kernel PCA methods
分类号
O235 [理学—运筹学与控制论]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种基于Bhattacharyya核的SVM
刘振丙
刘小茂
《应用数学》
CSCD
北大核心
2005
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部